PROPER KEY GENERATION FOR THE IZOSIGN ALGORITHM
Loránd Szöllösi, Gábor Fehér, Tamás Marosits
2008
Abstract
In the last decade using digital signatures in authentication and authorization protocols just as in e-business scenarios became more and more important and indispensable. New algorithms with different features for various applications are presented continuously. The IzoSign digital signature creation algorithm was intro- duced by the authors of this paper at CANS 2007. At that time, random key generation was proposed, which was later found vulnerable with high probability to a vertex matching attack (Kutylowski, 2007). We hereby analyze and generalize this kind of attacks, build a key generation algorithm that withstands such attacks, and then give a (theoretic) construction for key generation which (under the P ≠ NP or NP = E X P assumptions) is hard to break.
References
- Aaronson, S. (2008). Complexity http://qwiki.caltech.edu/wiki/Complexity Zoo.
- Babai, L. (1995). Automorphism groups, isomorphism reconstruction. In Graham, R., Grötschel, M., and Lovász, L., editors, Handbook of Combinatorics, chapter 27, pages 1447-1540. Elsevier Science.
- Babai, L., Grigoryev, D. Y., and Mount, D. M. (1982). Isomorphism of graphs with bounded eigenvalue multiplicity. In Proceedings of the Fourteenth Annual ACM Symposium on Theory of Computing, pages 310-324. ACM.
- Cormen, T. H., Leiserson, C. E., and Rivest, R. L. (1990). Introduction to Algorithms. MIT Press, Cambridge, MA, USA.
- Courtois, N. T., Finiasz, M., and Sendrier, N. (2001). How to achieve a McEliece-based digital signature scheme. In Advances in Cryptology - ASIACRYPT 2001, pages 157-174. Springer.
- Courtois, N. T., Goubin, L., and Patarin, J. (2003). SFLASHv3, a fast asymmetric signature scheme. Cryptology ePrint Archive, Report 2003/211. http://eprint.iacr.org/.
- Dessmark, A., Lingas, A., and Proskurowski, A. (1996). Faster algorithms for subgraph isomorphism of kconnected partial k-trees. In European Symposium on Algorithms, pages 501-513. Springer.
- Dubois, V., Fouque, P.-A., Shamir, A., and Stern, J. (2006). Breaking SFLASH. http://www.ecrypt.eu.org/webnews/webnews1206.htm#sflash.
- European Parliament and Council (1999). Directive 1999/93/ec on a community framework for electronic signatures. http://europa.eu.int/ISPO/legal/en/ecommerc/digsig.html, http://www.legi-internet.ro/diresignature.htm.
- Filotti, I. S. and Mayer, J. N. (1980). A polynomial time algorithm for determining isomorphism of graphs of fixed genus. In Proceedings of the Twelfth Annual ACM Symposium on Theory of Computing, pages 236-243. ACM.
- Gupta, A. and Nishimura, N. (1996a). Characterizing the complexity of subgraph isomorphism for graphs of bounded path-width. In STACS 7896: Proceedings of the 13th Annual Symposium on Theoretical Aspects of Computer Science, pages 453-464. Springer-Verlag.
- Gupta, A. and Nishimura, N. (1996b). The complexity of subgraph isomorphism for classes of partial k-trees. Theoretical Computer Science, 164:287-298.
- Hopcroft, J. and Tarjan, R. (1974). Efficient planarity testing. Journal of the ACM, 21(4):549-568.
- Ichikawa, S. and Yamamoto, S. (2002). Data dependent circuit for subgraph isomorphism problem. In Proceedings of 12th International Conference on Field Programmable Logic and Applications, pages 1068- 1071. Springer-Verlag.
- Kutylowski, M. (2007). personal communication regarding IzoSign algorithm.
- Lingas, A. (1989). Subgraph isomorphism for biconnected outerplanar graphs in cubic time. Theoretical Computer Science, 63(3):295-302.
- Lingas, A. and Syslo, M. M. (1988). A polynomial-time algorithm for subgraph isomorphism of two-connected series-parallel graphs. In ICALP 7888: Proceedings of the 15th International Colloquium on Automata, Languages and Programming, pages 394-409. SpringerVerlag.
- Luks, E. M. (1980). Isomorphism of graphs of bounded valence can be tested in polynomial time. In Proceedings of 21st IEEE FOCS Symposium, pages 42-49.
- Merkle, R. C. (1989). A certified digital signature. In Proceedings on Advances in Cryptology, pages 218-238. Springer-Verlag.
- Miller, G. (1980). Isomorphism testing for graphs of bounded genus. In Proceedings of the Twelfth Annual ACM Symposium on Theory of Computing, pages 225-235. ACM.
- Rivest, R. L., Shamir, A., and Adelman, L. M. (1977). A method for obtaining digital signatures and public-key cryptosystems. Technical Report MIT/LCS/TM-82.
- Schneier, B. (1993). Applied Cryptography: Protocols, Algorithms, and Source Code in C. John Wiley & Sons, Inc., New York, NY, USA.
- Spielman, D. A. (1996). Faster isomorphism testing of strongly regular graphs. In STOC 7896: Proceedings of the twenty-eighth annual ACM symposium on Theory of computing, pages 576-584. ACM Press.
- Szo?llo?si, L., Marosits, T., Fehér, G., and Recski, A. (2007). Fast digital signature algorithm based on subgraph isomorphism. In LNCS 4856: Proceedings of the 6th International Conference on Cryptology and Network Security, pages 34-46. Springer.
- Venkatesan, R. and Levin, L. (1988). Random instances of a graph coloring problem are hard. In Proceedings of the Twentieth Annual ACM Symposium on Theory of computing, pages 217-222. ACM Press.
Paper Citation
in Harvard Style
Szöllösi L., Fehér G. and Marosits T. (2008). PROPER KEY GENERATION FOR THE IZOSIGN ALGORITHM . In Proceedings of the International Conference on Security and Cryptography - Volume 1: SECRYPT, (ICETE 2008) ISBN 978-989-8111-59-3, pages 368-372. DOI: 10.5220/0001924403680372
in Bibtex Style
@conference{secrypt08,
author={Loránd Szöllösi and Gábor Fehér and Tamás Marosits},
title={PROPER KEY GENERATION FOR THE IZOSIGN ALGORITHM},
booktitle={Proceedings of the International Conference on Security and Cryptography - Volume 1: SECRYPT, (ICETE 2008)},
year={2008},
pages={368-372},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0001924403680372},
isbn={978-989-8111-59-3},
}
in EndNote Style
TY - CONF
JO - Proceedings of the International Conference on Security and Cryptography - Volume 1: SECRYPT, (ICETE 2008)
TI - PROPER KEY GENERATION FOR THE IZOSIGN ALGORITHM
SN - 978-989-8111-59-3
AU - Szöllösi L.
AU - Fehér G.
AU - Marosits T.
PY - 2008
SP - 368
EP - 372
DO - 10.5220/0001924403680372