Table 2: Lifting coefficients of Daub-6, Symlet-6, and Coiflet-2 wavelet filters.
Type Daub-6 Symlet-6 Coiflet-2
Updater 2.425 z
0
-0.227 z
0
-2.530 z
0
Predictor 0.079 z
−1
-0.352 z
0
-1.267 z
−1
0.216 z
0
-0.240 z
−1
0.342 z
0
Updater -2.895 z
1
0.561 z
2
0.505 z
1
-4.255 z
2
3.163 z
1
15.268 z
2
Predictor -0.020 z
−2
0.045 z
−3
0.233 z
−2
0.006 z
−3
-0.065 z
−2
Updater -18.389 z
3
6.624 z
4
-63.951 z
3
13.591 z
4
Predictor 0.144 z
−5
-0.057 z
−4
0.001 z
−5
0.002 z
−4
Updater -5.512 z
5
-3.793 z
5
Normalizer 0.432 2.315 -0.599 -1.671 0.108 9.288
cessor is capable to receive continuous data streams
and compute the transformation in every clock cy-
cle. Using 0.18-µm technology, the estimated area of
the proposed wavelet processor with 16-bit configura-
tion is 1.8 mm
2
and the estimated operating speed is
355 MHz.
REFERENCES
Agbinya, J. (1996). Discrete wavelet transform techniques
in speech processing. In Proceeding of the IEEE TEN-
CON. Digital Signal Processing Applications, TEN-
CON ’96, volume 2, pages 514–519.
Andra, K., Chakrabarti, C., and Acharya, T. (2002). A
VLSI architecture for lifting-based forward and in-
verse wavelet transform. IEEE Trans. Signal Process-
ing, 50(4):966–977.
Barua, S., Carletta, J., Kotteri, K., and Bell, A. (2004).
An Efficient Architecture for Lifting-based Two-
Dimensional Discrete Wavelet Transforms. In Pro-
ceedings of the GLSVLSI’04.
Bultheel, A. (2003). Wavelets with applications in signal
and image processing. -.
Calderbank, R., Daubechies, I., Sweldens, W., and Yeo, B.-
L. (1997). Lossless image compression using integer
to integer wavelet transforms. Proceedings of the In-
ternational Conference on Image Processing, 1:596–
599.
Carnero, B. and Drygajlo, A. (1999). Perceptual speech
coding and enhancement using frame-synchronized
fast wavelet packet transform algorithms. IEEE Trans.
Signal Processing, 47:1622–1634.
Christopoulos, C., Skodras, A., and Ebrahimi, T.
(2000). The JPEG2000 still image coding sys-
tem: an overview. IEEE Trans. Consumer Electron.,
46(4):1103–1127.
Daubechies, I. (1990). The wavelet transform, time-
frequency localization and signal analysis. IEEE
Transactions on Information Theory, 36:961–1005.
Daubechies, I. and Sweldens, W. (1998). Factoring Wavelet
Transforms into Lifting Steps. J. Fourier Anal. Appl.,
4(3):245–267.
Dillen, G., Georis, B., Legat, J., and Cantineau, O. (2003).
Combined line-based architecture for the 5-3 and 9-7
wavelet transform of JPEG2000. IEEE Trans. Circuits
Syst. Video Technol., 13(9):944–950.
Grgic, S., Kers, K., and Grgic, M. (1999). Image com-
pression using wavelets. In Kers, K., editor, Proc.
IEEE International Symposium on Industrial Elec-
tronics ISIE ’99, volume 1.
Kaisheng, Y. and Zhigang, C. (1998). A wavelet fil-
ter optimization algorithm for speech recognition.
In Intl. Conference on Communication Technology
Proc., ICCT ’98, volume vol.2, page 5pp.vol.2.
Mallat, S., editor (1998). A Wavelet Tour of Signal Process-
ing. Academic Press, Incorporated.
Martina, M., Masera, G., Piccinini, G., and Zamboni, M.
(2000). A VLSI architecture for IWT (Integer wavelet
Transform). In Masera, G., editor, Proceeding of the
43rd IEEE Midwest Symposium on Circuits and Sys-
tems, volume 3.
Meyer, Y. (1992). Wavelets and Operators. Press Syndicate
of the University of Cambridge.
Seo, Y.-H. and Kim, D.-W. (2006). A New VLSI Architec-
ture of Lifting-Based DWT. Lecture Notes in Com-
puter Science, 3985/2006:146–151.
Sweldens, W. (1995). The Lifting Scheme: A New Philos-
ophy in Biorthogonal Wavelet Constructions. Wavelet
Applications in Signal and Image Processing, 3:68–
79.
Usevitch, B. (2001). A tutorial on modern lossy wavelet
image compression: foundations of JPEG2000. IEEE
Signal Processing Mag., 18(5):22–35.
CONFIGURABLE VLSI ARCHITECTURE OF A GENERAL PURPOSE LIFTING-BASED WAVELET PROCESSOR
75