0 5 10 15 20 25 30
0
20
40
60
80
100
120
Number of the Active Stations
Optimized Frame Length
AC2,SNR=24.0dB
AC2,SNR=14.0dB
AC2,SNR=4.0dB
Figure 8: The optimal frame length varies with respect to
the number of active stations.
effect of the Rayleigh fading channel on the BER
value.
The results obtained in the simulation show that
the value of the throughput is sensitive to the frame
length and reaches the maximum at certain frame
length value. The optimal frame length increases ex-
ponentially when the value of SNR is higher and can
be treated as independent of the number of the active
stations, the data rate, and the priority of the AC in
the WiMedia standard. A station can then dynami-
cally adapt the transmitted frame length value in the
MAC layer according to the current value of the used
SNR so as to maximize its saturation throughput in
the MB-OFDM UWB network.
REFERENCES
Batra, A., Balakrishnan, J., and Dabak, A. (2003). “TI phys-
ical layer proposal for IEEE 802.15 task group 3a,”
IEEE P802.15-03/142r2-TG3a.
Bianchi, G. (2000). Performance analysis of the IEEE
802.11 distributed coordination function. IEEE J. Se-
lect. Areas. Commun., 18(3):535–547.
Deng, D.-J. and Chang, R.-S. (1999). A priority scheme
for IEEE 802.11 DCF access method. IEICE Trans.
Commun., E82-B(1):96–102.
ECMA International (2005). ECMA 368: High Rate Ultra
Wideband Phy and Mac Standard, Geneva: ECMA
International.
Federal Communications Commission (2002). “Revision of
part 15 of the commissions rules regarding ultra wide-
band transmission systems,” First Report and Order,
ET Docket 98-153, Washington, D.C.: Federal Com-
munications Commission.
IEEE Std. 802.11 (1999). Wireless LAN Medium Access
Control (MAC) and Physical Layer (PHY) Specifica-
tions, IEEE Std. 802.11, 1999 Edition.
IEEE Std. 802.11e (2003). Wireless medium access
control (MAC) and physical layer (PHY) specifica-
tions: Medium access control (MAC) enhancements
for quality of service (QoS), IEEE Std. 802.11e/Draft
5.0.
Kong, Z., Tsang, D. H. K., Bensaou, B., and Gao, D. (2004).
Performance analysis of IEEE 802.11e contention-
based channel access. IEEE J. Sel. Areas Commun.,
22(10):2095–2106.
Lai, H., Siriwongpairat, W., and Liu, K. (2007). Perfor-
mance analysis of multiband OFDM UWB systems
with imperfect synchronization and intersymbol inter-
ference. IEEE Journal of Selected Topics in Signal
Processing, 1(3):521–534.
Lu, K., Wu, D., Qian, Y., Fang, Y., and Qiu, R. C. (2007).
Performance of an Aggregation-Based MAC Protocol
for High-Data-Rate Ultrawideband Ad Hoc Networks.
IEEE Trans. on Vehicular Tech., 56(1):312–321.
Mangold, S., Choi, S., May, P., Klein, O., and Hiertz,
G. (2002). IEEE 802.11e wireless LAN for Quality
of Service, Proceedings European Wireless, Florence,
25-28 Feb., 2002, 32-39.
Taub, H. and Schilling, D. L. (1986). Principles of Commu-
nication Systems. McGraw-Hill, 2nd ed. New York p.
575-578.
Vishnevsky, V. M., Lyakhov, A. I., Safonov, A. A., Mo,
S. S., and Gelman, A. D. (2008). Study of Beaconing
in Multihop Wireless PAN with Distributed Control.
IEEE Trans. on Mobile Computing, 7(1):113–126.
WiMedia Alliance (2008). [Online], available:
www.wimedia.org/ [accessed 27 Mar. 2008].
Win, M. Z. and Scholtz, R. A. (1988). Impulse radio: How
it works. IEEE Communications Letters, 2(2):36–38.
Wong, D., Chin, F., Shajan, M., and Chew, Y. (2007). Sat-
urated Throughput of PCA with Hard DRPs in the
Presence of Bit Error for WiMedia MAC, Proceedings
Global Telecommunications Conference, Washington,
D.C., 26-30 Nov., 2007, 614-619.
Xiao, Y. (2005). Performance analysis of priority schemes
for IEEE 802.11 and IEEE 802.11e wireless LANs.
IEEE Trans. Commun., 4(4):1506–1515.
Zang, Y., Hiertz, G. R., Habetha, J., Otal, B., Sirin, H.,
and Reumerman, H.-J. (2005). Towards high speed
wireless personal area network - efficiency analysis of
MBOA MAC, Proceedings of the International Work-
shop on Wireless Ad-Hoc Networks, London, 23-26
May 2005, 10-20.
WINSYS 2008 - International Conference on Wireless Information Networks and Systems
120