2. Netsize: Convergence: Everything is going mobile. The Netsize Guide 2007. Netsize (2007)
3. Roberts, M., Berger, P.: Direct Marketing Management. Prentice-Hall (1989)
4. Prinzie, A., Van Den Poel, D.: Constrained optimization of data-mining problems to improve
model performance: A direct-marketing application. Expert Systems with Applications 29
(2005) 630–640
5. Nash, E.: Direct Marketing. McGraw-Hill (2000)
6. Battiato, S., Farinella, G., Giuffrida, G., Tribulato, G.: Data mining learning bootstrap
through semantic thumbnail analysis. In: SPIE-IS&T Electronic Imaging Science and Tech-
nology 2007 - Multimedia Content Access: Algorithms and Systems. (2007)
7. Julesz, B.: Textons, the elements of texture perception, and their interactions. Nature 290
(1981) 91–97
8. Renninger, L.W., Malik, J.: When is scene recognition just texture recognition? Vision
Research 44 (2004) 2301–2311
9. Winn, J., Criminisi, A., Minka, T.: Object categorization by learned universal visual dictio-
nary. In: ICCV ’05: Proceedings of the Tenth IEEE International Conference on Computer
Vision, Washington, DC, USA, IEEE Computer Society (2005) 1800–1807
10. Barnard, K., Forsyth, D.A.: Learning the semantics of words and pictures. In: ICCV. (2001)
408–415
11. Biederman, I., Mezzanotte, R., Rabinowitz, J.: Scene perception: Detecting and judging
objects undergoing relational violations. Cognitive Psychology 14 (1982) 143–177
12. Biederman, I.: Recognition by components: Atheory of human image interpretation. Psy-
chological Review 94 (1987) 115–148
13. Potter, M.: Meaning in visual search. Science 187 (1975) 965–966
14. Oliva, A., Torralba, A.: Modeling the shape of the scene: a holistic representation of the
spatial envelope. International Journal of Computer Vision 42 (2001) 145–175
15. Fei-Fei, L., Perona, P.: A bayesian hierarchical model for learning natural scene categories.
In: IEEE Conference on Computer Vision and Pattern Recognition. (2005)
16. Lazebnik, S., Schmid, C., Ponce, J.: Beyond bags of features: Spatial pyramid matching for
recognizing natural scene categories. In: IEEE Conference on Computer Vision and Pattern
Recognition. Volume 2. (2006) 2169–2178
17. Bergen, J.R., Julesz, B.: Rapid discrimination of visual patterns. IEEE Transactions on
Systems, Man, and Cybernetics 13 (1983) 857–863
18. Varma, M., Zisserman, A.: A statistical approach to texture classification from single images.
Int. J. Computer Vision 62 (2005) 61–81
19. Breiman, L., Friedman, J., Olshen, R., Stone, C.: Classification and Regression Trees.
Wadsworth and Brooks, Monterey, CA (1984)
20. Cleveland, W.S., Devlin, S.J., Grosse, E.: Regression by local fitting : Methods, properties,
and computational algorithms. Journal of Econometrics 37 (1988) 87–114
21. Shawe-Taylor, J., Cristianini, N.: Support Vector Machines and other kernel-based learning
methods. Cambridge University Press (2000)
22. Taylor, P., Caley, R., Black, A.W., King, S.: Wagon, edinburgh speech tools library (1999)
23. Comaniciu, D., Ramesh, V., Meer, P.: Kernel-based object tracking. IEEE Trans. Pattern
Anal. Mach. Intell. 25 (2003) 564–575
24. Oren, N.: Reexamining tf.idf based information retrieval with genetic programming. In:
SAICSIT ’02. (2002) 224–234
25. Chang, C.C., Lin, C.J.: LIBSVM: a library for support vector machines. (2001)
26. Oza, N.C.: Online bagging and boosting. In: Systems, Man and Cybernetics, 2005 IEEE
International Conference on. (2005) 2340–2345
4747