REFERENCES
Baum, L. E. (1972). An equality and associated maximiza-
tion technique in statistical estimation for probabilistic
functions of Markov processes. Inequalities, 3:1–8.
Borevitz, J. O., Liang, D., Plouffe, D., Chang, H.-S., Zhu,
T., Weigel, D., Berry, C. C., Winzeler, E., and Chory,
J. (2003). Large-scale identification of single-feature
polymorphisms in complex genomes. Genome Res,
13:513–523.
Cahan, P., Godfrey, L. E., Eis, P. S., Richmond, T. A.,
Selzer, R. R., Brent, M., McLeod, H. L., Ley, T. J.,
and Graubert, T. A. (2008). wuHMM: a robust al-
gorithm to detect DNA copy number variation using
long oligonucleotide microarray data. Nucleic Acids
Research, 36(7):1–11.
Dempster, A., Laird, N., and Rubin, D. (1977). Maxi-
mum likelihood from incomplete data via the EM al-
gorithm. Journal of the Royal Statistical Society, Se-
ries B, 39(1):1–38.
Durbin, R., Eddy, S., Krogh, A., and Mitchision, G. (1998).
Biological sequence analysis - Probabilistic models
of proteins and nucleic acids. Cambridge University
Press.
Fan, C., Vibranovski, M. D., Chen, Y., and Long, M. (2007).
A Microarray Based Genomic Hybridization Method
for Identification of New Genes in Plants: Case Anal-
yses of Arabidopsis and Oryza. J Integr Plant Biol,
49(6):915–926.
Fridlyand, J., Snijders, A. M., Pinkel, D., Albertson, D. G.,
and Jain, A. N. (2004). Hidden Markov models ap-
proach to the analysis of array CGH data. J Multivari-
ate Analysis, 90:132–153.
Hup
´
e, P., Stransky, N., Thiery, J.-P., Radvanyi, F., and Bar-
illot, E. (2004). Analysis of array CGH data: from
signal ratio to gain and loss of DNA regions. Bioin-
formatics, 20(18):3413–3422.
James, N., Graham, N., Celments, D., Schildknecht, B., and
May, S. (2007). AtEnsEMBL: A Post-Genomic Re-
source Browser for Arabidopsis. Methods Mol Biol,
406:213–228.
Jong, K., Marchiori, E., Meijer, G., Vaar, A. v. d., and Yl-
stra, B. (2004). Breakpoint identification and smooth-
ing of array comparative genomic hybridization data.
Bioinformatics, 20(18):3636–3637.
Lai, W. R., Johnson, M. D., Kucherlapati, R., and Park, P. J.
(2005). Comparative analysis of algorithms for identi-
fying amplifications and deletions in array CGH data.
Bioinformatics, 21(19):3763–3770.
Mantripragada, K. K., Buckley, P. G., de Stahl, T. D., and
Dumanski, J. P. (2004). Genomic microarrays in the
spotlight. Trends Genet, 20:87–94.
Marioni, J. C., Thorne, N. P., and Tavar
´
e (2006). BioHMM:
a heterogeneous hidden Markov model for segmenting
array CGH data. Bioinformatics, 22(9):1144–1146.
Martienessen, R. A., Doerge, R. W., and Colot, V. (2005).
Epigenomic mapping in Arabidopsis using tiling mi-
croarrays. Chromosome Research, 13:299–308.
Rabiner, L. (1989). A Tutorial on Hidden Markov Mod-
els and Selected Applications in Speech Recognition.
Proceedings of the IEEE, 77(2):257–286.
Richardson, S. and Green, P. J. (1997). On Bayesian Analy-
sis of Mixtures with an Unknown Number of Compo-
nents. Journal of the Royal Statistical Society, Series
B, 59(4):731–792.
Roche NimbleGen, Inc. (2008). A Performance Com-
parison of Two CGH Segmentation Analysis Algo-
rithms: DNACopy and segMNT. Available online:
http://www.nimblegen.com.
Rueda, O. M. and D
´
ıaz-Uriate, R. (2007). Flexible and
Accurate Dection of Genomic Copy-Number Changes
from aCGH. PLoS Comput Biol, 3(6).
Willenbrock, H. and Fridlyand, J. (2005). A comparison
study: applying segmentation to array CGH data for
downstream analyses. Bioinformatics, 21(22):4084–
4091.
ARRAY-BASED GENOME COMPARISON OF ARABIDOPSIS ECOTYPES USING HIDDEN MARKOV MODELS
11