Vic under the grant R0912.
REFERENCES
Alexander, G. E. (2002). Longitudinal pet evaluation of
cerebral metabolic decline in dementia: A poten-
tial outcome measure in alzheimer’s disease treatment
studies. In American Journal of Psychiatry, vol. 159,
pp. 738-745.
Andreasen, N., Minthon, L., Davidsson, P., Vanmechelen,
E., and et al. (2001). Evaluation of csf-tau and csf-a?2
as diagnostic markers for alzheimer disease in clinical
practice. In Am Med Assoc, vol. 58, pp. 373-379.
Babiloni, C., Ferri, R., Binetti, G., Cassarino, A., Forno,
G. D., Eercolani, M., Ferreri, F., Frisoni, G., and et al.
(2006). Fronto-parietal coupling of brain rhythms in
mild cognitive impairment: A multicentric eeg study.
In Brain Research Bulletin, pp. 63–67.
Belouchrani, A., Abed-Meraim, K., Cardoso, J.-F., and
Moulines, E. (1997). A blind source separation tech-
nique using second-order statistics. In IEEE Trans.
Signal Processing, vol. 45, pp. 434–444.
Borga, M. and Knutsson, H. (2001). A canonical correla-
tion approach to blind source separation. In Technical
Report LiU-IMT-EX-0062, Department of Biomedical
Engineering.
Cardoso, J. F. and Souloumiac, A. (1993). Blind beam-
forming for non-gaussian signals. In IEE Proceedings
- Part F, 140, 362–370.
Cichocki, A. and Amari, S. (2002). Adaptive Blind Signal
and Image Processing. Wiley, New York.
Cichocki, A., Amari, S., Siwek, K., and
et al., T. T. (WWW). Icalab toolboxes.
http://www.bsp.brain.riken.jp/ICALAB.
Cichocki, A., Shishkin, S. L., Musha, T., Leonowicz, Z.,
Asada, T., and Kurachi, T. (2005). Eeg filtering based
on blind source separation (bss) for early detection
of alzheimer’s disease. In Clinical Neurophysiology,
116, pp. 729–737.
Cruces-Alvarez, S. A., Cichocki, A., and Lathauwer, L. D.
(2004). Thin qr and svd factorizations for simultane-
ous blind signal extraction. In Proc. European Signal
Processing Conference (EUSIPCO), Vienna, Austria,
pp. 217–220.
Delorme, A., Makeig, S., and Sejnowski, T. (2001). Auto-
matic artifact rejection for eeg data using high-order
statistics and independent component analysis. In 3rd
ICASSP International Workshop, San Diego,.
Deweer, B., Lehericy, S., Pillon, B., Baulac, M., and et al.
(1995). Memory disorders in probable alzheimer’s
disease: the role of hippocampal atrophy as shown
with mri. In British Medical Journal, vol. 58, p. 590.
Ferri, C. P., Prince, M., Brayne, C., and et al., H. B. (2006).
Global prevalence of dementia: a delphi consensus
study. In The Lancet, vol. 366, pp. 2112-2117.
F´evotte, C. and Doncarli, C. (2004). Two contributions to
blind source separation using time-frequency distribu-
tions. In IEEE Signal Processing Letters, 11, pp. 386–
389.
Gonzalez, R. and Woods, R. (1992). Digital Image Process-
ing. Addison-Wesley.
Hyvarinen, A. and Oja, E. (1997). A fast fixed-point algo-
rithm for independent component analysis. In Neural
Computation, 9(7) pp. 1483–1492.
Karvanen, J., Eriksson, J., and Koivunen, V. (2000). Pear-
son system based method for blind separation. In
Workshop on Independent Component Analysis and
Blind Signal Separation, ICA2000, Helsinki, pp. 585–
590.
Kenney, J. F. and Keeping, E. S. (1962). Mathematics of
Statistics. Part 1. Van Nostrand, Princeton, NJ.
Koenig, T., Prichep, L., Dierks, T., Hubl, D., Wahlund, L.,
John, E., and Jelic., V. (2005). Decreased eeg synchro-
nization in alzheimer’s disease and mild cognitive im-
pairment. In Neurobiology of Aging, 26, pp. 165–171.
Sol´e-Casals, J., Vialatte, F., and Cichocki, Z. C. A. (2008).
Investigation of ica algirithms for feature extraction of
eeg signals in discrimination of alzheimer disease. In
Proc. International Conference on Bio-Inspired Sys-
tems and Signal Processing, Biosignals, pp. 232–235.
Tanzi, R. E. and Bertram, L. (2001). New frontiers in
alzheimer’s disease genetics. In Neuron, vol. 32, pp.
181-184.
Tong, L., Soon, V., Huang, Y. F., and Liu, R. (1991). Inde-
terminacy and identifiability of blind identification. In
IEEE Trans. CAS, vole. 38, pp. 499–509.
Vialatte, F., Cichocki, A., Dreyfus, G., Musha, T.,
Rutkowski, T., and Gervais, R. (2005). Blind source
separation and sparse bump modelling of time fre-
quency representation of eeg signals: New tools for
early detection of alzheimer’s disease. In Proc. IEEE
Workshop on Machine Learning for Signal Process-
ing, pp. 27–32.
COHERENCY AND SHARPNESS MEASURES BY USING ICA ALGORITHMS - An Investigation for Alzheimer's
Disease Discrimination
475