This paper has focused on binary classification
problems since only ECG records containing normal
beats and PVC beats were selected. Extension to
multi-category classification is also possible.
REFERENCES
Afonso, O. and Tompkins, W. (1999). Classification of pre-
mature ventricular complexes using filter bank fea-
tures, induction of decision trees and a fuzzy rule-
based system. Med. Biol. Eng, 37:560–565.
Bartlett, P. L. and Wegkamp, M. H. (2007). Classifica-
tion with a reject option using a hinge loss. Technical
Report M980, Department of Statistics, Florida State
University.
Chazal, P., O’Dwyer, M., and Reilly, R. (2004). Auto-
matic classification of hearthbeats using ecg morphol-
ogy and hearthbeat interval features. Trans.Biom.Eng,
51(7):1196–1206.
Chow, C. K. (1957). An optimum character recognition sys-
tem using decision function. IRE Trans. Electronic
Computers, EC-6(4):247–254.
Chow, C. K. (1970). On optimum recognition error and
reject tradeoff. IEEE Trans. on Information Theory,
16(1):41–46.
Cristianini, N. and Shawe-Taylor, J. (2000). An Introduction
to Support Vector Machines. Cambridge University
Press.
Donoho, D. (1995). Denoising by soft thresholding. IEEE,
Trans on Info Theory, 41(3):613–627.
Fumera, G. and Roli, F. (2002). Support vector machines
with embedded reject option. In Lee, S.-W. and Verri,
A., editors, Pattern Recognition with Support Vec-
tor Machines: First International Workshop, Lecture
Notes in Computer Science, pages 68–82. Springer.
Gomez-Herrero, G., Jecova, I., Krasteva, V., and Egiazar-
ian, K. (2006). Relative estimation of the karhunen
loeve transform basis functions for detection of ven-
tricular ectopic beats. IEEE Comput.Cardiol, 33:569–
572.
Herbei, R. and Wegkamp, M. H. (2006). Classification
with reject option. The Canadian Journal of Statis-
tics, 34(4):709–721.
Hu, Y. H., Palready, S. H., and Tompkins, W. J. (1997). A
patient-adaptable ecg beat classifier using a mixture of
experts approach. Trans.Biom.Eng, 44(4):891–900.
Jecova, I., Bortolan, G., and Christov, I. (2004). Pattern
recognition and optimal parameter selection in pre-
mature ventricular contraction calssification. IEEE,
Computer in cardiology, 31:357–360.
Krasteva, V. and Jecova, I. (2007). Qrs template matching
for recognition of ventricular ectopic beats. Annals of
Biomedical Engineering, 35(12):2065–2076.
Kwok, J. T. (1999). Moderating the outputs of support vec-
tor machine classifiers. IEEE Trans. on Neural Net-
works, 10(5):1018–1031.
Lagerholm, M., Peterson, G., Braccini, G., Edenbrandt, L.,
and So
¨
ernmo, L. (2000). Clustering ecg complex
using hermite functions and self-organizing maps.
IEEE.Trans.Biom.Eng, 47:838–848.
Lepage, R. (2003). Detection et analyse de l’onde p
d’un electrocardiogramme: Application au d
´
epistage
de la fibrillation auriculaire. Thse de Doctorat de
l’universit
´
e de Bretagne Occidentale.
Lin, H., Lin, C., and Weng, R. C. (2003). A note on
platt’s probabilistic outputs for support vector ma-
chines. Technical report, National Taiwan University,
Taipei 116, Taiwan.
Loosli, G., Canu, S., Vishwanathan, S., and Chattopadhay,
M. (2005). Boite
`
a outils SVM simple et rapide. RIA
– Revue d’Intelligence Artificielle, 19(4/5):741–767.
Minami, K., NAkajima, H., and Toyoshima, T. (1999).
Real-time discrimination of ventricular tach-
yarrhythmia with fourier-transform neural network.
Trans.Biom.Eng, 46:179–185.
Osowski, S., Hoai, L, T., and Markiewicz, T. (2004). Sup-
port vector machine-based expert system for reliable
heartbeat recognition. Trans.Biom.Eng, 51(4):582–
589.
Pan, J. and Tompkins, W. J. (1985). A real-time qrs dtection
algorithm. Trans.Biom.Eng, 32(3):230–236.
Platt, J. C. (2000). Probabilistic outputs for support vector
machines and comparisons to regularized likelihood
methods. Advances in Large Margin Classifiers.
Ramaswamy, P., Cota, N. G., Chan, K. L., and Shankar,
M. K. (2004). Multi-parameter detection of ectopic
heartbeats. IEEE, Int.Workshop.BioCAS.
Tortorella, F. (2004). Reducing the classification cost of
support vector classifiers through an ROC-based reject
rule. Pattern Analysis & Applications, 7(2):128–143.
Vapnik, V. N. (1995). The Nature of Statistical Learning
Theory. Springer Series in Statistics. Springer.
Vishwanathan, S. V. N., Smola, A., and Murty, N. (2003).
SimpleSVM. In Fawcett, T. and Mishra, N., editors,
Proceedings of the Twentieth International Confer-
ence on Machine Learning (ICML-2003), pages 68–
82. AAAI.
Yeap, T. H. (1990). Ecg beat classification by a neural net-
work. Annual international conf of IEEE Eng in Med
and Biol, 12:1457–1458.
BIOSIGNALS 2009 - International Conference on Bio-inspired Systems and Signal Processing
210