CONSISTENT CORTICAL RESPONSES FROM SUBCORTICALY DELIVERED ELECTRICAL STIMULI - A Study Oriented to Visual Prostheses

Fivos Panetsos, Elena Diaz-de Cerio, Abel Sanchez-Jimenez, Juan Jose Navarro-Valls, Jose A. Vega, Idoia Diaz-Guemes

2009

Abstract

Loss of vision is one of the most important challenges for science nowadays and a large amount of work has been done in the development and implant of visual neuroprostheses. The applicability of retinal implants is restricted either because healthy retinal neurons and/or optic nerve are not always available or because of problems related to the retinal implants themselves. At the present alternatives are restricted to cortical prostheses which in turn have several physiological and technical limitations. In our communication we describe a direct proof for the feasibility of subcortical visual prostheses that would solve several of the limitations of the cortical ones. Our approach consists in stimulating the visual cortex of intact animals by means of visual stimuli and then to generate similar responses by means of electrical stimulation of the lateral geniculate nucleus.

References

  1. Alonso, J.M., Usrey, W.M., & Reid, R.C. (2001). Rules of connectivity between geniculate cells and simple cells in cat primary visual cortex. Journal of Neuroscience, 21, 4002-4015.
  2. Baylor, D.A., Lamb, T.D., & Yau, K.W. (1979). Responses of retinal rods to single photons. J.Physiol, 288, 613-634.
  3. Brindley, G.S. & Lewin, W.S. (1968). The sensations produced by electrical stimulation of the visual cortex. J.Physiol, 196, 479-493.
  4. Chowdhury, V., Morley, J.W. & Coroneo, M.T. (2008). Development of an extraocular retinal prosthesis: Evaluation of stimulation parameters in the cat. J.Clin.Neurosci. 15, 900-906.
  5. Cohen, E.D. (2007). Prosthetic interfaces with the visual system: biological issues. J.Neural Eng, 4, R14-R31.
  6. Derrington, A.M. & Fuchs, A.F. (1979). Spatial and temporal properties of X and Y cells in the cat lateral geniculate nucleus. J.Physiol, 293, 347-364.
  7. Dobelle, W.H. (2000). Artificial vision for the blind by connecting a television camera to the visual cortex. ASAIO Journal, 46, 3-9.
  8. Gerding, H. (2007). A new approach towards a minimal invasive retina implant. J.Neural Eng, 4, S30-S37.
  9. Hubel, D.H. & Wiesel, T.N. (1961). Integrative action in the cat's lateral geniculate body. J.Physiol, 155, 385- 398.
  10. Humayun, M.S., Weiland, J.D., Fujii, G.Y., Greenberg, R., Williamson, R., Little, J., Mech, B., Cimmarusti, V., Van, B.G., Dagnelie, G., & de, J.E. (2003). Visual perception in a blind subject with a chronic microelectronic retinal prosthesis. Vision Research, 43, 2573-2581.
  11. Javaheri, M., Hahn, D.S., Lakhanpal, R.R., Weiland, J.D., & Humayun, M.S. (2006). Retinal prostheses for the blind. Annals of the Academy of Medicine, Singapore, 35, 137-144.
  12. Kastner, S., Schneider, K.A. & Wunderlich, K. (2006). Beyond a relay nucleus: neuroimaging views on the human LGN. Prog.Brain.Res 155, 125-143.
  13. Krisch, I. & Hosticka, B.J. (2007). Restoring visual perception using microsystem technologies: engineering and manufacturing perspectives. Acta Neurochir.Suppl. 97, 473-480.
  14. Kuffler, S.W. (1953). Discharge patterns and functional organization of mammalian retina. Journal of Neurophysiology, 16, 37-68.
  15. Lakhanpal, R.R., Yanai, D., Weiland, J.D., Fujii, G.Y., Caffey, S., Greenberg, R.J., de Juan E Jr, & Humayun, M.S. (2003). Advances in the development of visual prostheses. Current Opinion in Ophthalmology, 14, 122-127.
  16. Margalit, E., Maia, M., Weiland, J.D., Greenberg, R.J., Fujii, G.Y., Torres, G., Piyathaisere, D.V., O'Hearn, T.M., Liu, W., Lazzi, G., Dagnelie, G., Scribner, D.A., de Juan E Jr, & Humayun, M.S. (2002). Retinal prosthesis for the blind. Survey of Ophthalmology, 47, 335-356.
  17. Mason, A., Nicoll, A., & Stratford, K. (1991). Synaptic transmission between individual pyramidal neurons of the rat visual cortex in vitro. Journal of Neuroscience, 11, 72-84.
  18. Maynard, E.M. (2001). Visual prostheses. Annu.Rev.Biomed.Eng, 3, 145-168.
  19. Murphy, P.C. & Sillito, A.M. (1989). The binocular input to cells in the feline dorsal lateral geniculate nucleus (dLGN). J.Physiol, 415, 393-408.
  20. Pezaris, J.S. & Reid, R.C. (2007). Demonstration of artificial visual percepts generated through thalamic microstimulation. Proc.Natl.Acad.Sci.U.S.A, 104, 7670-7675.
  21. Saito, T., Kondo, H., & Toyoda, J. (1978). Rod and cone signals in the on-center bipolar cell: their different ionic mechanisms. Vision Research, 18, 591-595.
  22. Shenoy, K.V., Santhanam, G., Ryu, S.I., Afshar, A., Yu, B.M., Gilja, V., Linderman, M.D., Kalmar, R.S., Cunningham, J.P., Kemere, C.T., Batista, A.P., Churchland, M.M., & Meng, T.H. (2006). Increasing the performance of cortically-controlled prostheses. Conf.Proc.IEEE Eng Med.Biol.Soc., Suppl, 6652- 6656.
  23. Sillito, A.M., Cudeiro, J., & Jones, H.E. (2006). Always returning: feedback and sensory processing in visual cortex and thalamus. Trends in Neurosciences, 29, 307-316.
  24. Tehovnik, E.J. & Slocum, W.M. (2007). Phosphene induction by microstimulation of macaque V1. Brain Res.Rev. 53, 337-343.
  25. Thanos, S., Heiduschka, P., & Stupp, T. (2007). Implantable visual prostheses. Acta Neurochir.Suppl, 97, 465-472.
  26. Veraart, C., Raftopoulos, C., Mortimer, J.T., Delbeke, J., Pins, D., Michaux, G., Vanlierde, A., Parrini, S., & Wanet-Defalque, M.C. (1998). Visual sensations produced by optic nerve stimulation using an implanted self-sizing spiral cuff electrode. Brain Research, 813, 181-186.
  27. Warren, D.J., Fernandez, E., & Normann, R.A. (2001). High-resolution two-dimensional spatial mapping of cat striate cortex using a 100-microelectrode array. Neuroscience, 105, 19-31.
  28. Wiesel, T.N. & Hubel, D.H. (1966). Spatial and chromatic interactions in the lateral geniculate body of the rhesus monkey. Journal of Neurophysiology, 29, 1115-1156.
  29. Winter, J.O., Cogan, S.F., & Rizzo, J.F., III (2007). Retinal prostheses: current challenges and future outlook. J.Biomater.Sci.Polym.Ed, 18, 1031-1055.
Download


Paper Citation


in Harvard Style

Panetsos F., Diaz-de Cerio E., Sanchez-Jimenez A., Navarro-Valls J., Vega J. and Diaz-Guemes I. (2009). CONSISTENT CORTICAL RESPONSES FROM SUBCORTICALY DELIVERED ELECTRICAL STIMULI - A Study Oriented to Visual Prostheses . In Proceedings of the International Conference on Health Informatics - Volume 1: HEALTHINF, (BIOSTEC 2009) ISBN 978-989-8111-63-0, pages 155-160. DOI: 10.5220/0001510201550160


in Bibtex Style

@conference{healthinf09,
author={Fivos Panetsos and Elena Diaz-de Cerio and Abel Sanchez-Jimenez and Juan Jose Navarro-Valls and Jose A. Vega and Idoia Diaz-Guemes},
title={CONSISTENT CORTICAL RESPONSES FROM SUBCORTICALY DELIVERED ELECTRICAL STIMULI - A Study Oriented to Visual Prostheses},
booktitle={Proceedings of the International Conference on Health Informatics - Volume 1: HEALTHINF, (BIOSTEC 2009)},
year={2009},
pages={155-160},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0001510201550160},
isbn={978-989-8111-63-0},
}


in EndNote Style

TY - CONF
JO - Proceedings of the International Conference on Health Informatics - Volume 1: HEALTHINF, (BIOSTEC 2009)
TI - CONSISTENT CORTICAL RESPONSES FROM SUBCORTICALY DELIVERED ELECTRICAL STIMULI - A Study Oriented to Visual Prostheses
SN - 978-989-8111-63-0
AU - Panetsos F.
AU - Diaz-de Cerio E.
AU - Sanchez-Jimenez A.
AU - Navarro-Valls J.
AU - Vega J.
AU - Diaz-Guemes I.
PY - 2009
SP - 155
EP - 160
DO - 10.5220/0001510201550160