4 CONCLUSIONS
Two immunosensors, one impedimetric and other
one conductimetric, for the atrazine detection in red
wine samples have been developed. Both devices are
based on an array of IDµEs and in bioreagents
specifically developed. Impedimetric immunosensor
is able to detect atrazine in red wine at sub-ppb
concentrations, far below the Maximum Residue
Level (MRL, 50 µg L
−1
) required by EC. However,
this result could be improved using the
conductimetric device, which includes secondary
antibodies labelled with gold particles that increase
the conductive signal.
ACKNOWLEDGEMENTS
This work has been partially supported by the
Ministry of Science and Technology (Contract
number TEC2007-67081) and FEDER funds. The
MNT group is a consolidated Grup de Recerca de la
Generalitat de Catalunya since the year 2001
(expedient 00329). The AMR group is a
consolidated Grup de Recerca de la Generalitat de
Catalunya and has support from the Departament
d’Universitats, Recerca i Societat de la Informació la
Generalitat de Catalunya (expedient 2005SGR
00207).
REFERENCES
Fredj, H. Ben., Helali, S., Esseghaier C., Vonna L., Vidal,
L., Abdelghani, A. Labeled magnetic nanoparticles
assembly on polypyrrole film for biosensor
applications. Talanta 75 (2008) 740-747.
Guan, J.G., Miao, Y.Q. Zhang, Q.J. Impedimetric
Biosensors. Journal of Bioscience and Bioengineering
97 (2004) 219–226.
Helali, S., Martelet, C., Abdelghani, A., Maaref, M.A.,
Jaffrezic-Renault, N. A disposable immunomagnetic
electrochemical sensor based on functionalised
magnetic beads on gold surface for the detection of
atrazine. Electrochim. Acta 51 (2006) 5182–5186.
Hleli, S., Martelet, C., Abdelghani, A., Burais, N.,
Jaffrezic-Renault, N. Atrazine analysis using an
impedimetric immunosensor based on mixed
biotinylated self-assembled monolayer, Sensors and
Actuators B 113 (2006) 711–717.
Katz, E., Willner, I. Probing Biomolecular Interactions at
Conductive and Semiconductive Surfaces by
Impedance Spectroscopy: Routes to Impedimetric
Immunosensors, DNA-Sensors, and Enzyme
Biosensors. Electroanalysis 15 (2003) 913–947.
Luzinov, I., Julthongpiput, D., Liebmann-Vinson, A.,
Cregger, T., Foster, M.D., Tsukruk, V.V., Epoxy-
Terminated Self-Assembled Monolayers: Molecular
Glues for Polymer Layers. Langmuir 16 (2000) 504-
516.
Maggio, E.T., 1981. Enzyme-Immunoassay, CRC Press,
Florida.
Murphy, L., Biosensors and bioelectrochemistry. Current
Opinion in Chemical Biology 10 (2006) 177–184.
Pumera, M., Sánchez, S., Ichinose, I., Tang, J.
Electrochemical nanobiosensors. Sensors and
Actuators B 123 (2007) 1195–1205.
Valera, E., Ramón-Azcón, J., Rodríguez, A., Castañer, L.-
M., Sanchez-Baeza, F.-J., Marco, M.-P. Impedimetric
immunosensor for atrazine detection using
interdigitated μ-electrodes (IDµE’s). Sensors and
Actuators B 125 (2007) 526–537.
Valera, E., Ramón-Azcón, J., Sanchez-Baeza, F.-J.,
Marco, M.-P, Rodríguez, A.. Conductimetric
immunosensor for atrazine detection based on
antibodies labelled with gold nanoparticles. Sensors
and Actuators B (2008) 95-103.
Wang, J. Electrochemical biosensors: Towards point-of-
care cancer diagnostics. Biosensors and Bioelectronics
21 (2006), pp. 1887–1892.
Zhang, S.-B., Wu, Z.-S., Guo, M.-M., Shen, G.-L. Yu, R.-
Q. A novel immunoassay strategy based on
combination of chitosan and a gold nanoparticle label.
Talanta 71 (2007) 1530–1535.
BIODEVICES 2009 - International Conference on Biomedical Electronics and Devices
230