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Abstract: In this paper, we investigate the use of electroencephalograhic signals for the purpose of recognizing unspoken
speech. The term unspoken speech refers to the process in which a subject imagines speaking a given word
without moving any articulatory muscle or producing any audible sound. Early work by Wester (Wester,
2006) presented results which were initially interpreted to be related to brain activity patterns due to the
imagination of pronouncing words. However, subsequent investigations lead to the hypothesis that the good
recognition performance might instead have resulted from temporal correlated artifacts in the brainwaves
since the words were presented in blocks. In order to further investigate this hypothesis, we run a study
with 21 subjects, recording 16 EEG channels using a 128 cap montage. The vocabulary consists of 5 words,
each of which is repeated 20 times during a recording session in order to train our HMM-based classifier.
The words are presented in blockwise, sequential, and random order. We show that the block mode yields
an average recognition rate of 45.50%, but it drops to chance level for all other modes. Our experiments
suggest that temporal correlated artifacts were recognized instead of words in block recordings and back the
above-mentioned hypothesis.

1 INTRODUCTION

1.1 Motivation

Electroencephalography (EEG) has proven to be use-
ful for a multitude of new methods of communication
besides the well-known clinical applications. In re-
cent years, speech recognition has facilitated our lives
by providing a new, more natural means of communi-
cation with machines. Previous research has proven
that it is feasible to link these two ideas, that is to use
EEG for the recognition of normal speech (Wester,
2006). This has been taken one step further by investi-
gations of whether it is feasible to recognize unspoken
speech based on the EEG signals recorded ((Wester,
2006) and (Calliess, 2006)). Unspoken speech means
that a subject thinks a given word without the use of
the articulatory muscles and without uttering any au-
dible sound.

Up to now, speech recognition usually depends on
audible spoken utterances. However, we can think of
two scenarios in which unspoken speech is preferable.
First, there are situations where using spoken speech
is undesirable or even unfeasable, for instance in quiet
settings or environments where uttering speech is im-

possible. Second, there are people who are not able to
utter speech due to a physical disability. For instance,
locked-in patients have extremely limited possibilities
for communicating with their environment.

1.2 Related Work

Investigating EEG-based brain computer interfaces
(BCIs) has evolved into an increasingly active strand
of research. Good overviews can be found in (Dorn-
hege et al., 2007) and (Wolpaw et al., 2002), while
(Lotte et al., 2007) provides a review of classification
algorithms. Prominent examples of BCIs include the
Thought Translation Device (Birbaumer, 2000) and
the Berlin Brain Computer Interface (Blankertz et al.,
2006). The aim of BCIs is to translate the thoughts
or intentions of a given subject into a control signal
for operating devices such as computers, wheelchairs
or prostheses. Using a BCI usually requires the user
to explicitly manipulate his/her brain activity which
is then used as a control signal for the device (Ni-
jholt et al., 2008). This usually necessitates a learning
process that may last several months as described in
(Neuper et al., 2003). By contrast, we focus on the
direct recognition of mentally uttered speech with the
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aim of developping a more intuitive interface.
Several systems have been developped which cou-

ple a spelling application to a BCI for mental text en-
try ((Birbaumer et al., 1999), (Scherer et al., 2004),
(Wolpaw et al., 2003)). None of these systems at-
tempts to recognize words directly, though.

Another approach has been taken by develop-
ing systems that recognize silent speech based on
electromyographic (EMG) data (Maier-Hein, 2005).
However, this technique is based on the movement of
facial muscles and thus cannot be used by locked-in
patients or patients with diseases that prevent articu-
latory muscle movements.

In (Suppes et al., 1997), it has been shown that
isolated words can be recognized based on EEG and
MEG recordings. In one of their experimental condi-
tions called internal speech, the subjects were shown
one out of 12 words on a screen and asked to utter this
word ’silently’ without using any articulatory mus-
cles.

For the work described in this paper we used a
similar task. In an initial study, Marek Wester im-
plemented a system that seemed to be capable of rec-
ognizing unspoken speech based on EEG signals at a
high recognition rate (Wester, 2006). However, the
words were presented in blocks. In a subsequent
study, Jan-P. Calliess showed that blockwise presen-
tation of words produces far better results than any
other presentation mode he experimented with. Con-
sequently, he formulated the question whether the
good results using block mode were due to tempo-
ral correlated brain activity artifacts (Calliess, 2006).
In both studies, the recognition rates were estimated
since they were calculated offline with the method de-
scribed in section 2.2. The two contradicting posi-
tions can be formulated as follows:

Hypothesis A. Unspoken speech can be recognized
based on EEG signals employing the method pro-
posed in (Wester, 2006).

Hypothesis B. The recognition results reported in
(Wester, 2006) were overestimated due to temporal
correlated artifacts in the EEG signals that were rec-
ognized instead of words.

In this paper, we investigate which one of these
hypotheses is correct. For this, it was of importance to
produce data which was recorded in the same record-
ing session (that is without removing the EEG cap)
but with varying presentation modes such that the data
could be compared directly. A more detailed analysis
of the data can be found in (Porbadnigk, 2008).

2 EXPERIMENTAL SETUP

For this study, 21 subjects (6 female, 15 male) were
recorded in a total of 68 sessions. The average age
was 24.5 years and all of the subjects were fluent in
German.

2.1 Recording Hardware

The VarioPortTM was used as amplifier/ADC and
recording device which has a resolution of 0.22 V /
bit and 16 input channels (for more details, refer to
(Becker, 2004)). All recordings were conducted at a
sampling rate of 300Hz. We used an elastic EEG cap
by Electro-Cap International, Inc., equipped with 128
Ag/AgCl electrodes. Out of these, only 16 could be
recorded simultaneously due to the limitations of our
amplifier. The selection of the electrodes was based
on the experience gained in (Calliess, 2006), follow-
ing the layout shown in Figure 1.
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Caps and electrodes

We used Ag/AgCl electrodes. The electrodes were attached to an elastic cap in fixed

positions so that each electrode’s position on the wearer’s scalp was known 1. The elastic-

ity allowed slight variations of the test subjects head circumference and also established

tight contact between head and electrode. Because the amplifier restricted us to 16 input

channels, only 16 electrodes of a cap could be recorded.

The cap already being used in the previous work was a standard low-density cap with

electrode positions selected in a standard way with compliance to the 10-20 system. The

manufacturer was Electro-Cap International, Inc. The cap’s electrode placement is de-

picted on the left side of Figure 3.1.

For the new cap, the choice eventually fell on a 128 - electrode, high-density cap produced

by the same manufacturer. The layout is depicted in Figure 3.2.

Figure 3.2: The layout of the new, high density cap. The subset of electrode positions actually

recorded are marked by squares. Position 8 and 13 correspond to C3 and C4 (according to the 10-20

system), respectively. The position numbers equal the channel numbers the corresponding electrodes

where connected to.

As you can see there, the selected subset of 16 electrodes was located around the orofacial

motor cortex with higher density. The only two electrodes recording signals over other

areas where one over the left eyebrow placed there for blink detection and the other one

1A prospective test subject’s head had to be measured to guarantee the cap was suitable for the head

size.

Figure 1: Layout of the high-density EEG cap used. The
subset of electrode positions actually recorded are marked
by squares. Position 8 and 13 correspond to C3 and C4
(according to the 10-20 system), respectively.

The main focus of recording was the area around
the orofacial motor cortex. The only exception were
two electrodes. One was placed above the left eye-
brow for eye blink detection (electrode 1 in Figure 1).
The other electrode was located as far away from the
motor strip as possible but still picking up a large part
of signals from Broca’s area of the left cortical hemi-
sphere (electrode 2 in Figure 1) which is reported to
be dominant for speech production.

2.2 Recognition Software

The recognition of the recorded data was performed
with the Janus Recognition Toolkit (JRTk), a state-
of-the-art speech recognition system (Waibel et al.,
2001). Word segmentation was based on eye blinks
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with which the subjects marked the beginning and the
end of the thinking process for each word. These were
detected by an automatic eye blink detector (refer to
(Calliess, 2006) for more details).

In JRTk, every word is modeled by a left-to-right
Hidden Markov Model (HMM). The standard HMM
used for training had five states and one Gaussian
mixture per state. We also performed experiments
with different numbers of HMM states (3,4,5,6,7) and
Gaussians per state (4,8,16,32,64). It turned out that
the ideal parameters depend on the word order but no
clear trend could be detected.

We focused on offline recognition in this work.
For training, four iterations of Expectation Maximiza-
tion were applied to improve the HMM models. After
the Viterbi path had been computed for each word,
the one with the best score was chosen as recognizer
hypothesis. For training and testing, a round robin
scheme was used for as many times as each single
word was recorded (20 times in this work). In each
round i (i ∈ {1, ...,20}), one sample of each word was
left out of the training procedure and used for testing,
resulting in a test set of 95 samples and a training set
of 5 samples. Each round resulted in a percentage ci
of how many of these 5 samples in the test set were
recognized correctly. The final recognition rate R was
computed as follows:
R (%) = ∑i ci

20 with i ∈ {1, ...,20},
ci ∈{0%, 20%, 40%, 60%, 80%,100%}

Thus, the recognition rate R is the average like-
lihood that the system could recognize a word cor-
rectly from the given EEG data, using the leave-one-
out method described above. The recognition rates
which we obtained are in fact estimates since we did
not have an online system for testing. The recognition
rates reported in (Wester, 2006) and (Calliess, 2006)
were calculated in the same way.

Based on previous findings (Wand, 2007), the
Double-Tree Complex Wavelet Transform (DTCWT)
with decomposition level 3 was chosen for prepro-
cessing. Also, a Linear Discriminant Analysis (LDA)
was applied to the feature vectors.

2.3 Database Collection

As vocabulary domain, we chose the first five words
of the international radiotelephony spelling alphabet
(alpha, bravo, charlie, delta, echo) each of which was
repeated 20 times. The total number of recordings is
provided in Table 1.

A standard recording for a subject consisted of
three sessions. A session is defined as a tuple Si =
(Wi,Oi) with i ∈ {1,2,3}, where Wi is the given word
list and Oi is the word order in which this word list is

presented to the subject. Each of these sessions had
the same word list Wi of length 100, but the word
order was varied between blocks, blocksReordered,
shortBlocks, sequential and randomized.

If the words were presented in blocks, they were
presented to the subjects in blocks of 20 words:
((alpha)20,(bravo)20,(charlie)20,(delta)20,(echo)20)

The order of the blocks was randomized for some
subjects which is referred to as blocksReordered.
ShortBlocks means that the words were presented in
short blocks of five repetitions for each word:
(((alpha)5,(bravo)5,(charlie)5,(delta)5,(echo)5)4)

If words were presented in sequential word order,
the quintuple (alpha, bravo, charlie, delta, echo) was
repeated 20 times. Randomized means that the words
were shown to the subject in random order, subject to
the constraint that each word occurred 20 times.

Table 1: Overview over the number of recordings in the
database and the average recognition rates R (%).

Word Order Subjects Sessions R
Blocks 7 11 45.95

BlocksReordered 11 11 45.05
ShortBlocks 10 10 22.10
Randomized 16 20 19.48
Sequential 9 15 18.09

2.4 Data Acquisition

The subject was seated at a desk in front of a wall,
facing a CRT display which was conncected to a lap-
top and showed the instruction. The supervisor was
sitting in front of this laptop, out of sight of the sub-
ject, to control the recordings. The laptop was used
for both the online control of the experiments and the
actual data recording.

Each of the recording steps consisted of four
phases and had the following structure: In phase 1,
the word wi was shown to the subject for two seconds.
Subsequently, the screen turned blue without showing
any word (phase 2). When the screen turned white
again after 2 seconds, the recording phase started
(phase 3). The subject had the instruction to do the
following in this phase: First, s/he had to blink with
both eyes and then imagine speaking the word that
had been shown in phase 1 without moving any artic-
ulatory muscles. Then, s/he had to signal the end of
the thought with a second blink.

3 EXPERIMENTS AND RESULTS

In our experiments, we investigated the impact of
word order and conducted cross session experiments.
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3.1 Impact of Word Order

The first part of the experiments was based on varia-
tions in the presentation mode during recordings. We
recorded three sessions per subject without removing
the EEG cap, with varying word order across these
sessions. Thus, the sessions of one subject could be
compared directly in order to investigate the influence
of the word order. We observed a clear correlation
between the word order in which the words were pre-
sented and the recognition rate. A breakdown of the
average recognition recognition rate per word order is
given in Table 1. The overall picture was as follows
(as can be seen in Figure 2):

Rblocks > RshortBlocks > Rrandomized > Rsequential

where the latter three rates were basically at chance
level. Rblocks includes both alphabetical and reordered
blocks and had a value of 45.50%.
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Figure 2: Recognition rate depending on word order for 13
subjects. Data points of the same subject have the same
color and are connected.

First, the word order Oi was varied between
blocks, randomized and sequential. If hypothesis B
were right, randomized and sequential would yield
worse results than blocks. This was the case. Only
blocks yield results above chance level and this word
order is vulnerable to temporal artifacts.

Result 1. Only block recordings yield recognition
rates significantly above chance level (average over
all block recordings: 45.50%).

However, the feedback from the subjects sug-
gested an alternative explanation: The subjects re-
ported that they could concentrate better when the
words were presented in blocks. So hypothesis A can
be amended with the following:

Hypothesis A1. Block recordings facilitate thinking
the words in a consistent way.

In order to evaluate this new hypothesis, we ex-
perimented with shortBlocks which shares one prop-
erty of blocks: The same word is presented to the sub-
ject n times in a row (n=20 for blocks, n=5 for short-
Blocks). If A1 were right, shortBlocks should yield

much better results than randomized, but worse than
blocks. This was more or less the case as can be de-
rived from Figure 2. However, the recognition results
were very close to chance level (average recognition
rate: 22.10%).

Result 2. Although shortBlocks share an important
property with blocks, the average recognition rate
(22.10%) is much lower than for blocks (45.50%).
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Figure 3: Impact of temporal closeness on recognition rate
for alphabetical blocks (a) and blocksReordered (b). The
size of a bubble indicates the number of times the system
recognizes a given reference word at time y as the hypothe-
sis at time x (x=y if the the word is recognized correctly).

The next step was to use reordered blocks in the
recordings. Reordered means that the blocks still
consisted of blocks of 20 words but those blocks
were arranged in a different order. We then calcu-
lated two separate confusion matrices, one over all
the reordered blocks and one over all the alphabetical
blocks. In both cases, we ordered the matrix such that
reference 1 was the first reference timewise and refer-
ence 5 was the last one. These two matrices showed
the same characteristic pattern (compare diagram a)
and b) of Figure 3). Furthermore, it can be seen that
the more distant in time a block B is from reference
block A, the less likely it is that a word from block B
gets confused with a word from block A.

Thus, our experiments suggest that temporal ar-
tifacts indeed superimpose the signal of interest in
block recordings. The results indicate that the second
part of hypothesis B seems to be correct which claims
that the recognition results of block recordings were
overestimated due to temporal correlated artifacts. In
fact, we assume that it is these temporal correlated ar-
tifacts which are actually recognized by JRTk.

Result 3. For blocks recordings, it seems that tempo-
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ral correlated artifacts are recognized instead of the
signal of interest.

However, this does not yet answer the fundamen-
tal question of whether it is possible to recognize un-
spoken speech based on EEG signals since it does not
necessarily mean that there is no speech-related signal
to be identified.

3.2 Cross Session Experiments

The purpose of the cross session experiments was
to examine an alternative explanation for why blocks
yield better results.

If hypothesis A1 were right, that is if the words
were indeed thought in a more consistent way dur-
ing block recordings, these recordings would deliver
more reliable data. Consequently, the blocks model
would be trained more accurately, resulting in higher
recognition rates. Thus, we ammended hypothesis A:

Hypothesis A2. Block recordings lead to more reli-
able data containing less noise and showing less vari-
ance in the length of the utterances.

In order to examine this, we trained an HMM with
blocks data and tested it on data recorded from the
same subject, but with word orders different from
blocks. If hypothesis A were right, the recognition
rate should improve. The results show that they re-
mained at chance level instead.
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Figure 4: Cross session testing with blocks for subject 05.

This could have been due to the fact that we tested
the system on a word order different from blocks or
due to a high variance in the signals between ses-
sions in general. Therefore, we recorded three ses-
sions from the same subject but set the word order to
blocks for all of them. This was done for two subjects.
For each of them, the system was trained with one
blocks session and tested on a different blocks session.
The recognition result droped significantly to chance
level (see Figure 4). This is essentially the same re-
sult as for the previous cross session experiments with
different word orders. The results can be summarized
as follows:

Result 4. Cross session training with the method pro-
posed in (Wester, 2006) does not yield recognition
rates above chance level, even if the recording is done
with the same word order.

However, it has been shown in (Suppes et al.,
1997) that subject-independent predictions are pos-
sible. It has to be taken into account, though, that
their subject-independent model was built by averag-
ing over half of their database which was much larger
than ours.

Since cross session training did not work out, in-
dependent of whether the same or a different presen-
tation mode was used, we cannot conclude if this con-
tradicts hypothesis A2.

4 DISCUSSION AND
CONCLUSIONS

The main goal of the work presented here was to in-
vestigate whether it is possible to reliably recognize
unspokend speech based on EEG signals using the
method proposed in (Wester, 2006). While data pre-
sented in (Wester, 2006) was given a promising in-
terpretation, (Calliess, 2006) suggested that temporal
correlated artifacts in the EEG signals may have been
recognized instead of words. These two hypotheses
were refined during the course of our work:

Hypothesis A. Unspoken speech can be recognized
based on EEG signals employing the method pro-
posed in (Wester, 2006). The fact that other word or-
ders yield worse recognition rates may be explained
by the following assumptions:

• A1: Block recordings facilitate thinking the words
in a consistent way.

• A2: Block recordings lead to more reliable data
containing less noise and showing less variance
in the length of the utterances.

Hypothesis B. Unspoken speech cannot be recog-
nized based on EEG signals employing the method
proposed in (Wester, 2006). The recognition results
reported in (Wester, 2006) were overestimated due to
temporal correlated artifacts in the brainwave signals
that were recognized instead of words.

It could be shown that except for the block mode
which yielded an average recognition rate of 45.50%,
all other modes had recognition rates at chance level.
This may be partially explained by the assumptions
stated in A1 and A2. However, our experiments sug-
gest that temporal correlated artifacts indeed superim-
pose the signal of interest in block recordings. There-
fore, the promising initial results presented in (Wester,
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2006) seem most likely to have been caused by an ar-
tifact in the experimental design, that is temporal cor-
related patterns were recognized rather than words.
Thus, we conclude that hypothesis B is probably cor-
rect. Furthermore, our experiments showed that cross
session training (within subjects) only yields recogni-
tion rates at chance level, even if the same word order
was used for the recordings.

Of course, our analysis does not imply that it is
impossible in general to correctly extract (and clas-
sify) unspoken speech from EEG data. It has to be
pointed out that we do not address the general ques-
tion of whether this is feasible. Instead, we focus
on the method proposed in (Wester, 2006) and show
that it is not well suited for the task. Furthermore, it
should be taken into account that some assumptions
are proposed here which we cannot prove so far.

However, the approach taken here could be
changed and improved in several respects. First, using
a vocabulary of words with semantic meaning might
lead to improvements. Apart from this, it would prove
useful to provide JRTk with more training data by
recording a higher number of repetitions per word.
Second, the recognizing system itself needs to be
changed. Due to the high variation of the length of the
utterances, normalization would most probably im-
prove the performance of the system. Furthermore,
a different word model might be more suitable than
HMMs since it turned out that HMMs with just one
state yield fairly good results. A one state HMM how-
ever does not model temporal data anymore.

Third, the subject could be provided with feed-
back on whether a given word was recognized cor-
rectly. It has been shown in (Birbaumer, 2000) that
subjects can indeed be trained to modify their brain
waves for using an EEG-based BCI. Thus, we would
expect that the subject could adapt his/her brain waves
such that they are recognized more easily .
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