Irvine, CA: University of California, School of
Information and Computer Science.
Czarnowski, I., Je¸drzejowicz, P. (2004) An approach to
instance reduction in supervised learning. In: Co-
enen F., Preece A. and Macintosh A. (Eds.), Research
and Development in Intelligent Systems XX, Proc. of
AI2003, the Twenty-third SGAI International Confer-
ence on Innovative Techniques and Applications of
Artificial Intelligence, Springer-Verlag London Lim-
ited, 267-282.
Czarnowski, I., Je¸drzejowicz, P., Wierzbowska, I. (2008a)
An A-Team Approach to Learning Classifiers from
Distributed Data Sources. In: Ngoc Thanh Nguyen,
Geun Sik Jo, Robert J. Howlett,an Lakhmi C. Jain
(Eds.), KES-AMSTA 2008, Lecture Notes in Com-
puter Science, LNAI 4953, Springer-Verlag Berlin
Heidelberg, 536-546
Czarnowski, I., Je¸drzejowicz, P. (2008b) Data Reduction
Algorithm for Machine Learning and Data Mining.
In: Nguyen N.T. et al. (eds) IEA/AIE 2008, Lecture
Notes in Computer Science, LNAI 5027, Springer-
Verlag Berlin Heidelberg, 276-285.
Dash, M., & Liu H. (1997). Feature selection for classifica-
tion. Intelligence Data Analysis 1(3), 131-156.
Kargupta, H., Byung-Hoon Park, Daryl Hershberger, &
Johnson, E. (1999). Collective Data Mining: A New
Perspective Toward Distributed Data Analysis. In Kar-
gupta H and Chan P (Eds.), Advances in Distributed
Data Mining. AAAI/MIT Press, 133-184.
Liu, H., Lu, H., & Yao, J. (1998). Identifying Relevant
Databases for Multidatabase Mining. In Proceedings
of Pacific-Asia Conference on Knowledge Discovery
and Data Mining, 210-221.
Prodromidis, A., Chan, P.K., & Stolfo, S.J. (2000). Meta-
learning in Distributed Data Mining Systems: Issues
and Approaches. In H. Kargupta and P. Chan (Eds.)
Advances in Distributed and Parallel Knowledge Dis-
covery, AAAI/MIT Press, Chapter 3.
Raman, B., & Ioerger, T.R. (2003). Enhancing learning us-
ing feature and example selection. Journal of Machine
Learning Research (in press)
Rozsypal, A., & Kubat, M. (2003). Selecting Representa-
tive Examples and Attributes by a Genetic Algorithm.
Intelligent Data Analysis, 7(4), 291-304.
Quinlan, J.R. (1993). C4.5: programs for machine learning.
Morgan Kaufmann, SanMateo, CA.
Skalak, D.B. (1994). Prototype and Feature Selection by
Sampling and Random Mutation Hill Climbing Algo-
rithm. Procciding of the International Conference on
Machine Learning, 293-301.
Stolfo, S., Prodromidis, A.L., Tselepis, S., Lee, W., & Fan.
D.W. (1997). JAM: Java Agents for Meta-Learning
over Distributed Databases. In Proceedings of the 3rd
International Conference on Knowledge Discovery
and Data Mining, Newport Beach, CA, AAAI Press,
74-81.
Talukdar, S., Baerentzen, L., Gove, A., & P. de Souza
(1996). Asynchronous Teams: Co-operation Schemes
for Autonomous. Computer-Based Agents, Technical
Report EDRC 18-59-96, Carnegie Mellon University,
Pittsburgh.
The European Network of Excellence on Intelligence Tech-
nologies for Smart Adaptive Systems (EUNITE) -
EUNITE World Competition in domain of Intelligent
Technologies (2002). Accesed on 1 September 2002
from http://neuron.tuke.sk/competition2.
Tsoumakas, G., Angelis, L., & Vlahavas, I. (2004). Cluster-
ing Classifiers for Knowledge Discovery from Phys-
ical Distributed Database. Data & Knowledge Engi-
neering, 49(3), 223-242.
Xiao-Feng Zhang, Chank-Man Lam, & William K. Che-
ung (2004). Mining Local Data Sources For Learn-
ing Global Cluster Model Via Local Model Exchange.
IEEE Intelligence Informatics Bulletine, Vol. 4, No. 2.
Vucetic, S., & Obradovic, Z. (2000). Performance Con-
trolled Data Reduction for Knowledge Discovery in
Distributed Databases, Procciding of the Pacific-Asia
Conference on Knowledge Discovery and Data Min-
ing, 29-39.
DISTRIBUTED LEARNING ALGORITHM BASED ON DATA REDUCTION
203