

TOWARDS AN INTEGRATIVE METHODOLOGY
FOR DEVELOPING MULTI-AGENT SYSTEMS

José M. Gascueña and Antonio Fernández-Caballero
Universidad de Castilla-La Mancha, Escuela Politécnica Superior de Albacete
Instituto de Investigación en Informática de Albacete, 02071-Albacete, Spain

Keywords: Multi-agent systems, Agent development methodologies.

Abstract: A great number of methodologies to develop MAS systems have been proposed in the last few years. But, a
perfect methodology that satisfies all the developer necessities can not be found. This is the reason why
different methodologies are studied to create a new one. In this article, a methodology that includes all steps
from the capture of requirements to the implementation and deployment of an agent-based application is
proposed. In first place, an Analysis Overview Diagram is created to obtain an initial sketch of the
application. Afterwards, the model obtained - by following the two first stages proposed by Prometheus
methodology - is integrated into INGENIAS through UML-AT language. Next, the modelling goes on with
INGENIAS. Finally, code is generated for the ICARO-T platform.

1 INTRODUCTION

Multi-agent systems (MAS) technology is adequate
for developing open, complex, and distributed
systems, and they offer a natural way of operating
with legacy systems (Jennings & Wooldridge,
1995). A great number of methodologies to develop
MAS systems have been proposed in the last few
years. Gaia, Tropos, MaSE, MESSAGE,
Prometheus, and INGENIAS are just a few
examples.

Nonetheless, a perfect methodology that satisfies
all the developer necessities can not be found.
Usually, techniques and tools proposed in different
methodologies to provide a solution to the specific
problem that is being approached are combined. The
result is a new methodology fruit of combining
several proposals of the analyzed methodologies. In
fact, in the literature, methodologies can be found
that are influenced by other methodologies that
already were proposed previously. For instance,
INGENIAS (Pavón, Gómez-Sanz & Fuentes, 2005)
together with a methodology to model real-time
behaviors were adopted to define a MAS
methodology for Holonic Manufacturing Systems
(Giret, Botti & Valero, 2005).

In this article, INGENIAS is chosen as the basis,
due to its recent direction towards model-driven

development (MDD) (Pavón, Gómez-Sanz &
Fuentes, 2006) in order to define a new methodology
to develop MAS. But, the two first stages proposed
in Prometheus (Padgham & Winikoff, 2004),
namely system specification and architectural
design, are previously integrated in order to solve
some current deficiencies in INGENIAS (see section
2). The language used by Prometheus is diffeerent
from the INGENIAS language. Therefore, in order
to use INGENIAS, it is necessary to transform the
model obtained with Prometheus into an equivalent
INGENIAS model. This transformation is performed
with language UML-AT (Fuentes, Gómez-Sanz &
Pavón, 2006), (Fuentes, Gómez-Sanz & Pavón,
2007). Later we propose to continue modelling with
INGENIAS. Finally, code is generated for the
ICARO-T platform (Garijo et. al, 2004), (Garijo et.
al, 2008). The result of using the mentioned
technologies, Prometheus, INGENIAS, UML-AT
and ICARO-T, turns into a new methodology to
develop MAS. The process followed in the
methodology assists the MAS developer from the
capture of requirements to the implementation and
deployment of the application.

The article structure is as follows. Section 2
describes the contributions made by INGENIAS and
the deficiencies that it presents. Methodologies
Prometheus and INGENIAS, as well as the tools that
support them, are compared in section 3. In section 4

 392
Gascueña J. and Fernández-Caballero A. (2009).
TOWARDS AN INTEGRATIVE METHODOLOGY FOR DEVELOPING MULTI-AGENT SYSTEMS.
In Proceedings of the International Conference on Agents and Artificial Intelligence, pages 392-399
DOI: 10.5220/0001658203920399
Copyright c© SciTePress

the phases of the integrative methodology to develop
MAS are proposed and described. Finally, some
conclusions are offered.

2 WHY STARTING WITH
INGENIAS?

In the initial INGENIAS proposal (Pavón, Gómez-
Sanz & Fuentes, 2005) there are several
contributions to develop MAS. First, it offers a
meta-model to specify MAS. A MAS is considered
from five complementary viewpoints: organization,
agent, goals and tasks, interaction, and environment.
Second, it adopts the unified software development
process (USDP) (Jacobson, Booch & Rumbaugh,
1999) as a guideline to define the steps necessary to
develop the elements and diagrams of MAS during
the analysis and design phases. Third, INGENIAS
Development Kit (IDK) is a tool that supports the
methodology. IDK has integrated a set of utilities
that allow model edition, verification, validation,
and automatically generate code and documentation.

Now, INGENIAS is being reformulated in terms
of the MDD paradigm (Pavón, Gómez-Sanz &
Fuentes, 2006). Nowadays the use of model-driven
engineering (MDE) techniques along the life cycle
of software development is gaining more and more
interest (Schmidt, 2006). The key idea underlying
this paradigm is that if the development is guided by
models there will be important benefits in
fundamental aspects such as productivity,
portability, interoperability and maintenance.
Therefore, in the MAS field, it seems quite useful to
use a methodology such as INGENIAS, which
supports this approach. There are some other works
using MDE in the area of MAS (Perini & Susi,
2005), (Rougemaille et. al, 2007), (Jarraya &
Guessoum, 2007), among others.

Indeed, there are other reasons for studying the
methodology INGENIAS and the tools created
around. The INGENIAS engineer, connoisseur of
the INGENIAS meta-model, can (a) define the meta-
model for the domain of a concrete application, (b)
personalize the IDK for a specific application
domain, and, (c) create transformations to generate
source code for the final platform on which the
agents will run. There exist some previous
experiences to adapt the INGENIAS language to
more specific systems. For example, the IDK
framework has been used to construct an editor for
Holonic Manufacturing Systems (Giret, Botti &
Valero, 2005). Also the INGENIAS language has

been adapted for social simulation environments
(Sansores, Pavón & Gómez-Sanz, 2004).

Unfortunately, in our opinion, the process
followed in INGENIAS during the analysis and
design phases of MAS is very complex and difficult
to understand, because it is not clear how the
different models are being constructed along the
phases, despite the documented general guidelines.
Moreover, INGENIAS does not provide any
mechanism to discover which will be the agents of
the system and their interactions. Thus, it is
necessary to raise a process of alternative
development that makes system development
simpler. In order to make the MAS methodology
easy to use for non expert people in the development
of such systems, it is necessary that it offers a
collection of detailed guidelines, including examples
and heuristics, which help better understanding what
is required in each step of the development process
used in the methodology. These guidelines also
serve as a help to the experts in MAS development.
They will be able to transmit their experience to
other users explaining why and how they have
obtained the different elements (agents, interactions,
etc.) of the agent-based application.

3 COMPARISON

INGENIAS has several advantages as opposed to
Prometheus (see Table 1): (a) it follows an MDD
approach, (b) it facilitates a general process to
transform the models generated during the design
phase into executable code. The advantages of
Prometheus can be used (following the process to
discover which be the agents of the system and its
interactions) to enhance INGENIAS. In Table 2 the
Prometheus Design Tool (PDT) (Padgham,
Thangarajah & Paul) and INGENIAS Development
Kit (IDK) (Gómez Sanz & Pavón) tools are
compared. It may be observed that PDT only has
one advantage with respect to IDK: it has a
mechanism to prioritize parts of a project. In the rest
of considered characteristics, IDK equals or
surpasses PDT. Thus, the tool used to support the
new methodology proposed is IDK as it is
independent from the development process and it
may be personalized for the application under
development.

TOWARDS AN INTEGRATIVE METHODOLOGY FOR DEVELOPING MULTI-AGENT SYSTEMS

393

Table 1: Comparing Prometheus and INGENIAS.

 Prometheus INGENIAS
Proper development process YES NO: Based in the USDP (analysis

and design phases)
General process to generate code
from the models

NO: Only obtains code for
JACK language

YES: Based in template
definitions

Iterative development process YES YES
Model-driven development (MDD) NO: Only proposes a

correspondence between design
models and JACK code

YES

Requirements capture YES: A version of KAOS is
used to describe the system's
goals (van Lamsweerde, 2001)
complemented with the
description of scenarios that
illustrate the operation of the
system. In addition, in
(Cysneiros & Zisman, 2004)
guidelines appear to generate
the artefacts of the Prometheus
system specification from
organizational models
expressed in i*

YES: Performed by means of use
case diagrams. Then, use cases are
associated to system goals, and a
goals analysis is performed to
decompose them into easier ones;
and finally tasks are associated to
get the easiest goals

Meta-model YES (Dam, Winikoff &
Padgham, 2006)

YES

Mechanisms to discover agents and
interactions among agents

YES: Groups functionalities
through cohesion and coupling
criteria.

NO

Agent model BDI-like agents Agents with mental states

Figure 1: Mapping Prometheus into INGENIAS.

ICAART 2009 - International Conference on Agents and Artificial Intelligence

394

Table 2: Comparing PDT and IDK.

 PDT IDK
Supported methodology Prometheus INGENIAS
Interface references the
development process

YES: Diagrams are grouped in
three levels according to the
three Prometheus phases

NO: Possibility to create packets that
correspond to the diverse phases of
the process. Models of each phase
are added to the corresponding
packet

Mechanisms to prioritize parts of
the project.

YES: Three scope levels
(essential, conditional and
optional) (Perepletchikov &
Padgham, 2005)

NO

Code generation YES: JACK http://www.agent-
software.com/

YES: JADE http://jade.tilab.com/

Report generation of the MAS
specification in HTML

YES YES

Model fragmenting in various
pieces

NO: For instance, only one
diagram may be created to in
order to gather all the
objectives of the system

YES

Save a diagram as an image YES YES
Deployment diagrams NO YES
Agent communication Defined in basis of messages

and interaction protocols. Does
not use a specific
communication language. For
JACK, there is a module
compliant with FIPA
(Yoshimur, 2003).

Defined in accordance with
communication acts of the agent
communication language (ACL)
proposed by FIPA
http://www.fipa.org/specs/fipa00061/

Utility to simulate MAS
specifications before generating
the final code

NO YES: Realized on the JADE
platform. It is possible to manage
interaction and tasks, and to inspect
and modify the agents' mental states

4 PHASES OF THE NEW
METHODOLOGY

First Phase. In the first stage of the methodology
proposed an analysis overview diagram is created.
This diagram is used to develop a high level view of
the system requirements. This diagram will specify,
in main lines, which are the actors - entities (human
or software/hardware) external to the system – that
interact with our system, where the perceptions that
enter the system come from, which are the responses
of the system (actions), an initial proposal of which
might be the system roles, what messages are sent,

and some used data. This kind of diagram appeared
for the first time in PDT version 2.5.

Second Phase. Prometheus defines a proper
detailed process to specify, implement and
test/debug agent-oriented software systems. This
process incorporates three phases: (1) system
specification identifies the basic goals and
functionalities of the system, develops the use case
scenarios that illustrate the functioning of the
system, and specifies which are the inputs (percepts)
and outputs (actions); (2) architectural design uses
the outputs produced in the previous phase to
determine the agent types that exist in the system
and how they interact; and, (3) detailed design

TOWARDS AN INTEGRATIVE METHODOLOGY FOR DEVELOPING MULTI-AGENT SYSTEMS

395

centres on developing the internal structure of each
agent and how each agent will perform its tasks
within the global system. Finally, Prometheus details
how to obtain the implementation in the agent-
oriented programming language JACK.

The two first phases proposed in Prometheus
(system specification and architectural design) are
used to be the next phase of the new integrative
methodology. The user identifies the agents and
their interactions following the guidelines offered by
Prometheus in these phases. In general terms, the
mechanism provided by Prometheus to identify
agents consists in identifying the goals during the
system specification phase, and then in grouping the
goals to obtain functionalities. Next, in the
architectural design phase, functionalities are
grouped to obtain the system agents, using cohesion
and coupling criteria to decide which the best
groupings are. These two concepts are essential in
Software Engineering to obtain a good software
development (the one that has maximum cohesion
and minimum coupling) and to ease its further
maintenance. Thus, the MAS developer gets an
initial model according to Prometheus, following its
two first stages (system specification and
architectural design).

Afterwards, mappings are used to obtain an
equivalent model in INGENIAS. From this point on
the advantages offered by model-driven software
development are used. The mappings are defined
leaning in an intermediate language denominated
Unified Modelling Language for Activity Theory
(UML-AT) (Fuentes, Gómez-Sanz & Pavón, 2007).
UML-AT allows establishing bidirectional
transformations between models of different
languages. There exists a previous experience in
integrating two methodologies, Tropos and
INGENIAS, using UML-AT (Fuentes, Gómez-Sanz
& Pavón, 2006).

The process of transforming Prometheus into
INGENIAS methodology elements, with the help of
intermediate language UML-AT, is shown in Figure
1. In first place (process 1), we start from the
Prometheus meta-model specified with language
GOPRR (Graph Object Property Relationship Role)
(Lyytinen & Rossi, 1999). Translation rules to
obtain elements, expressed in UML-AT language,
equivalent to the ones selected in Prometheus, are
created and used. Next (process 2), translation rules
are used to obtain the specification in INGENIAS
equivalent to the one obtained in UML-AT
language. The Repository of Translations contains
tuples indicating the matches and instantiation
functions used in the translation, as well as the

elements participating in it (either used in the
process or created as a result of it) and an identifier
of the specification to which each one belongs to.

A match represents the translation between two
sets of structures, the source pattern (it is described
in the source language) and the target pattern (it is
described in the target language). An instantiation
function describes the correspondence of the
variables in the source patterns with the elements in
the current specifications according to the matching
that is presented.

ATLAS Transformation Language (ATL)
(Bézivin, Jouault & Touzet, 2005), a model
transformation language compliant with the OMG
MOF/QVT (Queries / Views /Transformation), can
be used as an alternative to approach the problem of
transforming Prometheus to INGENIAS. A meta-
model and a model expressed in original language
(in this case, Prometheus), a destination meta-model
(in this case, INGENIAS) and rules defined with
ATL to perform the transformation are needed in
this case. The result is a destination model
(INGENIAS, in this case) equivalent to the original
model. The meta-models and models can be defined
in Ecore, the language used by Eclipse Modelling
Framework (EMF). The INGENIAS meta-model,
defined initially in GOPRR, has been migrated to
Ecore (García-Magariño, Gómez-Sanz & Pavón,
2007). Thus, it is only necessary to define: (1) the
Prometheus meta-model with Ecore, and, (2) the
transformation rules in ATL. We have decided to
use UML-AT because it is a technology related to
the research group that has developed INGENIAS.
In addition, it supposes the same service load as
using ATL: to define a meta-model (for Prometheus
in GOPRR) and translation rules (to transform a
Prometheus specification into a UML-AT
specification). The corresponding part to transform
UML-AT into INGENIAS is solved in (Fuentes,
Gómez-Sanz & Pavón, 2007). A tool called Activity
Theory Assistant (ATA) has been developed to help
using the techniques based on the theory of the
activity and to support the translation process. ATA
is embedded in a plug-in of the IDK. Notice,
however, that the current IDK version available in
SourceForge, http://sourceforge.net/projects/ingenias,
does not include it.

In Prometheus, in order to describe the
interactions among agents, interaction protocols
using a reviewed version of Agent UML (AUML)
denominated AUML-2 are developed. UML-AT has
already been applied to establish correspondences
between FIPA protocols designed with AUML

ICAART 2009 - International Conference on Agents and Artificial Intelligence

396

models (Bauer & Odell, 2005) and INGENIAS
models (Fuentes, Gómez-Sanz & Pavón, 2007).

This work is taken as the starting point to
transform interaction protocols obtained with
Prometheus into the equivalent notation used in
INGENIAS. The IDK tool, which provides support
to INGENIAS, allows representing protocols
according to the AUML annotation (Gómez Sanz &
Pavón). This means that the interaction protocols
created with Prometheus could be used directly in
INGENIAS, with no need to use any transformation.
Nevertheless, its development has not evolved
enough. In fact, in version 2.6 of the IDK this utility
no longer appears.

Third Phase. The new methodology does not
reuse the last phase of Prometheus (detailed design)
because it is too much centred in BDI-like agents.
Moreover, Prometheus also describes how the
obtained entities are transformed in the design phase
into the concepts used for a specific implementation
language (JACK). These two aspects, centring in a
single type of agent and defining a mechanism to
generate code for a particular implementation
language, suppose, in principle, a loss of generality.
In the new methodology, once the equivalent model
in INGENIAS has been obtained, the architecture of
each type of identified agent is provided. The
possible types of agents are the ones available in
ICARO-T: cognitive agents and reactive agents. In
this phase the necessary guidelines for completing
all the INGENIAS models already exist.

Fourth Phase. With respect to code generation,
the INGENIAS proposal is followed. INGENIAS
generalizes a process to transform the models,
generated in the phase of design, in running code for
any destination platform (Pavón, Gómez-Sanz &
Fuentes, 2006). It is based in the definition of
templates for each destination platform and
procedures for extracting information present in the
models. Once the code has been obtained, the
developer refines the resulting code completing any
information that was not contained in the
specifications (models) or in the templates. Finally,
the application is deployed.

ICARO-T is the platform selected for running
the agents (Garijo et. al, 2004), (Garijo et. al, 2008).
It offers four categories of reusable component
models: agent organization models to describe the
overall structure of the system, agent models,
resource models to encapsulate computing entities
providing services to agents, and basic computing
entities.

There are several reasons for selecting the multi-
agent platform ICARO-T. The use of its components
has allowed to significantly reducing time and effort
in the design and implementation phases by an
average of a 65 percent. In the phases of testing and
correction cycles the errors are also reduced.
Consequently, the applications require less resources
and lower implementation time (Pavón, Garijo &
Gómez-Sanz, 2007). The ICARO-T components
have been used in telecommunications company
Telefonica for developing several voice recognition
services. At the moment, it is also being used by
other research teams. This is the case, for example,
in an e-learning project denominated ENLACE
(Celorrio & Verdejo, 2007).

Figure 2 shows the technology and tools used in
the integrative methodology proposed.

5 CONCLUSIONS AND FUTURE
WORK

The combination of current technologies
(Prometheus, INGENIAS, UML-AT and ICARO-T)
has given rise to a new integrative methodology for
the development of agent-based systems. It uses the
guidelines offered by Prometheus to identify agents
and their interactions. Later, the obtained model,
following Prometheus methodology, is transformed
into INGENIAS to continue the development. This
transformation is performed under UML-AT. Once
modelling has ended up, code is generated for the
ICARO-T platform.

In order to use this methodology definitively it is
necessary: (1) to specify the Prometheus meta-model
in GOPRR, (2) to create the rules to translate
Prometheus concepts in UML-AT language, and, (3)
to define templates for the IDK to generate code for
the ICARO-T platform. A first proposal in order to
transform Prometheus models into equivalent
INGENIAS models using an informal language has
recently been considered (Gascueña & Fernández-
Caballero, 2008).

ACKNOWLEDGEMENTS

This work is supported in part by the Spanish
Ministerio de Educación y Ciencia TIN2007-67586-
C02 grant, and the Junta de Comunidades de
Castilla-La Mancha PBI06-0099 grant.

TOWARDS AN INTEGRATIVE METHODOLOGY FOR DEVELOPING MULTI-AGENT SYSTEMS

397

Figure 2: MAS development methodology.

ICAART 2009 - International Conference on Agents and Artificial Intelligence

398

REFERENCES

Bauer, B., & Odell, J. (2005). UML 2.0 and agents: How
to build with the new UML standard. Journal of
Engineering Applications in Artificial Intelligence,
Vol. 18, No. 2, pp. 141-157.

Bézivin, J., Jouault, F., & Touzet, D. (2005). An
introduction to the ATLAS model management
architecture. Research Report LINA, (05-01).
February 2005.

Celorrio, C., & Verdejo, M.F. (2007). Adapted activity
deployment and configuration in a pervasive learning
framework. Proceedings in Pervasive Learning,
Workshop at Pervasive 2007, PL2007, pp. 51-58.

Cysneiros, G., & Zisman, A. (2004). Refining Prometheus
methodology with i*. 3rd International Workshop on
Agent-Oriented Methodologies, OOPSLA 2004.

Dam, K.H., Winikoff, M., & Padgham, L. (2006). An
agent-oriented approach to change propagation in
software evolution. Proceedings of the Australian
Software Engineering Conference, ASWEC 2006, pp.
309-318.

Fuentes, R., Gómez-Sanz, J.J., Pavón, J. (2006).
Integrating agent-oriented methodologies with UML-
AT. Proceedings of the 5th International. Joint
Conference on Autonomous Agents and Multiagent
Systems, AAMAS 2006, pp. 1303-1310.

Fuentes, R., Gómez-Sanz, J.J., Pavón, J. (2007). Model
integration in agent-oriented development.
International Journal of Agent-Oriented Software
Engineering, Vol. 1, No.1, pp. 2-27.

García-Magariño, I., Gómez-Sanz, J.J., & Pavón, J.
(2007). Representación de las relaciones en los
metamodelos con el lenguaje Ecore. Desarrollo de
Software Dirigido por Modelos, DSDM07.

Garijo, F., Bravo, S., Gonzalez, J., & Bobadilla, E. (2004).
BOGAR-LN: An agent based component framework.
Lecture Notes in Artificial Intelligence, Vol. 3040, pp.
207-220.

Garijo, F., Polo, F., Spina, D., Rodríguez, C. (2008).
ICARO-T User Manual. Internal Report, Telefonica
I+D, May 2008.

Gascueña, J.M., & Fernández-Caballero, A. (2008).
Prometheus and INGENIAS agent methodologies: A
complementary approach. Proceedings of the 9th
International Workshop on Agent-Oriented Software
Engineering, AOSE'08.

Giret, A., Botti, V., & Valero, S. (2005). MAS
methodology for HMS. Lecture Notes in Artificial
Intelligence, Vol. 3593, pp. 39-49.

Gómez Sanz, J.J., & Pavón, J. (2008). INGENIAS
Development Kit (IDK) Manual. Version 2.5.2
(corresponds to version 2.5 of the IDK).
http://heanet.dl.sourceforge.net/sourceforge/ingenias/
ingeniasmanual.v2.5.pdf

Jarraya, T., and Guessoum, Z. (2007). Towards a model
driven process for multi-agent system. Lecture Notes
in Computer Science, Vol. 4696, pp. 256-265.

Jacobson, I., Booch, G. & Rumbaugh, J. (1999). The
unified software development process. Reading, MA:
Addison-Wesley.

Jennings, N.R., & M. Wooldridge. (1995). Applying agent
technology. International Journal of Applied Artificial
Intelligence, Vol. 9, No. 4, pp. 351-359.

Lyytinen, K.S., & Rossi, M. (1999). METAEDIT+ - A
fully configurable multi-user and multi-tool CASE and
CAME environment. Lecture Notes in Computer
Science, Vol. 1080, pp.1-21.

Padgham, L., & Winikoff, M. (2004). Developing
Intelligent Agents Systems: A Practical Guide. John
Wiley and Sons.

Padgham, L., Thangarajah, J., & Paul, P. (2008).
Prometheus Design Tool. Version 2.5. User Manual.
http://www.cs.rmit.edu.au/agents/pdt/docs/PDT-
Manual.pdf.

Pavón, J., Gómez-Sanz, J.J., & Fuentes, R. (2005). The
INGENIAS methodology and tools. In: Agent-
Oriented Methodologies. Idea Group Publishing.

Pavón, J., Gómez-Sanz, J.J., & Fuentes, R. (2006). Model
driven development of multi-agent systems. Lecture
Notes in Computer Science, Vol. 4066, pp. 284-298.

Pavón, J., Garijo, F., & Gómez-Sanz, J. (2007). Complex
systems and agent-oriented software engineering. In
Engineering Environment-Mediated Multiagent
Systems, EEMMAS 2007, pp. 3-16.

Perepletchikov, M., & Padgham, L. (2005). Systematic
incremental development of agent systems, using
Prometheus. In Fifth International Conference on
Quality Software, QSIC'05, pp. 413-418.

Perini, A., and Susi, A. (2005). Automating model
transformations in agent-oriented modelling. Lecture
Notes in Computer Science, Vol. 3950, pp. 167-178.

Rougemaille, S., Migeon, F., Maurel, Ch., Gleizes, M.P.
(2007). Model driven engineering for designing
adaptive multi-agent systems. Proceedings of the 8th
Annual International Workshop Engineering Societies
in the Agents World, ESAW07.

Sansores, C., Pavón, J. & Gómez-Sanz, J.J. (2006). Visual
modeling for complex agent-based simulation
systems. Lecture Notes in Artificial Intelligence, Vol.
3891, pp. 174-189.

Schmidt, D.C. (2006). Guest editor's introduction: Model-
driven engineering. Computer, Vol. 39, No. 2, pp. 25-
31.

van Lamsweerde, A. (2001). Goal-oriented requirements
engineering: A guided tour. Proceedings of the 5th
IEEE International Symposium on Requirements
Engineering, RE'01, pp. 249-263.

Yoshimura, K. (2003). FIPA JACK: A plugin for JACK
Intelligent AgentsTM. Technical Report, RMIT
University. September 2003.

TOWARDS AN INTEGRATIVE METHODOLOGY FOR DEVELOPING MULTI-AGENT SYSTEMS

399

http://heanet.dl.sourceforge.net/sourceforge/ingenias/%20ingeniasmanual.v2.5.pdf
http://heanet.dl.sourceforge.net/sourceforge/ingenias/%20ingeniasmanual.v2.5.pdf
http://www.cs.rmit.edu.au/agents/pdt/docs/PDT-Manual.pdf
http://www.cs.rmit.edu.au/agents/pdt/docs/PDT-Manual.pdf

