A KNOWLEDGE-RICH APPROACH TO THE RAPID ENUMERATION OF QUASI-MAGIC SUDOKU SEARCH SPACES

P. A. Roach, S. K. Jones, S. Perkins, I. J. Grimstead

2009

Abstract

The popular logic puzzle, Sudoku, consists of placing the digits 1, …, 9 into a 9 x 9 grid, such that each digit appears only once in each row, column, and subdivided ‘mini-grid’ of size 3 x 3. Uniqueness of solution of a puzzle is ensured by the positioning of a number of given values. Quasi-Magic Sudoku adds the further constraint that within each mini-grid, every row, column and diagonal must sum to 15±∆, where ∆ is chosen to take a value between 2 and 8. Recently Sudoku has been shown to have potential for the generation of erasure correction codes. The additional quasi-magic constraint results in far fewer given values being required to ensure uniqueness of solution, raising the prospect of improved usefulness in code generation. Recent work has highlighted useful domain knowledge concerning cell interrelationships in Quasi-Magic Sudoku for the case ∆ = 2, providing pruning conditions to reduce the size of search space that need be examined to ensure uniqueness of solution. This paper examines the usefulness of the identified rich knowledge in restricting search space size. The knowledge is implemented as pruning conditions in a backtracking implementation of a Quasi-Magic Sudoku solver, with a further cell ordering heuristic. Analysis of the improvement in processing time, and thereby of the potential usefulness of Quasi-Magic Sudoku for code generation, is provided.

References

  1. Bartlett, A. and Langville, A. (2006). An integer programming model for the sudoku problem. Preprint available at http://www.cofc.edu/ langvillea/Sudoku/sudoku2.pdf. Cited 1 Jun 2008.
  2. Felgenhauer, B. and Jarvis, F. (2006). Mathematics of sudoku I. Mathematical Spectrum, 39:15-22.
  3. Forbes, T. (2007a). Quasi-magic sudoku puzzles. M500, 215:1-10.
  4. Forbes, T. (2007b). Sudoku puzzles. http://anthony.d.forbes.googlepages.com/sudoku.htm Cited 1 June 2008.
  5. Gomes, C. and Shmoys, D. (2002). The promise of lp to boost cp techniques for combinatorial problems. Proceedings of the Fourth International Workshop on Integration of AI and OR techniques in Constraint Programming for Combinatorial Optimisation Problems, pages 291-305. France.
  6. Jones, S. K., Perkins, S., and Roach, P. A. (2008). Quasimagic sudoku. in prep.
  7. Jones, S. K., Roach, P. A., and Perkins, S. (2007). Construction of heuristics for a search-based approach to solving sudoku. Research and Development in Intelligent Systems XXIV: Proceedings of AI-2007, the Twentyseventh SGAI International Conference on Artificial Intelligence.
  8. McWilliams, F. and Sloane, N. (1977). The Theory of ErrorCorrecting Codes. Elsevier: Amsterdam.
  9. Moraglio, A. and Togelius, J. (2007). Geometric particle swarm optimization for the sudoku puzzle. GeccoConference Conf 9, 1:118-125.
  10. Moraglio, A., Togelius, J., and Lucas, S. (2006). Product geometric crossover for the sudoku puzzle. Proceedings of the IEEE Congress on Evolutionary Computation, pages 470-476.
  11. Rich, E. and Knight, K. (1991). Artificial Intelligence. McGraw-Hill, 2 edition. Singapore.
  12. Royle, G. (2006). Minimum sudoku. Internal Report, http://people.csse.uwa.edu.au/gordon/sudokumin.php. Cited 1 Jun 2008.
  13. Simonis, H. (2005). Sudoku as a constraint problem. Modelling and Reformulating Constraint Satisfaction Problems, pages 13-27.
  14. Soedarmandji, E. and McEliece, R. J. (2007). Iterative decoding for sudoku and latin sqaure codes. Forty-Fifth Annual Allerton Conference, pages 488-494.
Download


Paper Citation


in Harvard Style

Roach P., Jones S., Perkins S. and Grimstead I. (2009). A KNOWLEDGE-RICH APPROACH TO THE RAPID ENUMERATION OF QUASI-MAGIC SUDOKU SEARCH SPACES . In Proceedings of the International Conference on Agents and Artificial Intelligence - Volume 1: ICAART, ISBN 978-989-8111-66-1, pages 246-254. DOI: 10.5220/0001659502460254


in Bibtex Style

@conference{icaart09,
author={P. A. Roach and S. K. Jones and S. Perkins and I. J. Grimstead},
title={A KNOWLEDGE-RICH APPROACH TO THE RAPID ENUMERATION OF QUASI-MAGIC SUDOKU SEARCH SPACES},
booktitle={Proceedings of the International Conference on Agents and Artificial Intelligence - Volume 1: ICAART,},
year={2009},
pages={246-254},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0001659502460254},
isbn={978-989-8111-66-1},
}


in EndNote Style

TY - CONF
JO - Proceedings of the International Conference on Agents and Artificial Intelligence - Volume 1: ICAART,
TI - A KNOWLEDGE-RICH APPROACH TO THE RAPID ENUMERATION OF QUASI-MAGIC SUDOKU SEARCH SPACES
SN - 978-989-8111-66-1
AU - Roach P.
AU - Jones S.
AU - Perkins S.
AU - Grimstead I.
PY - 2009
SP - 246
EP - 254
DO - 10.5220/0001659502460254


in Harvard Style

Roach P., Jones S., Perkins S. and Grimstead I. (2009). A KNOWLEDGE-RICH APPROACH TO THE RAPID ENUMERATION OF QUASI-MAGIC SUDOKU SEARCH SPACES.In Proceedings of the International Conference on Agents and Artificial Intelligence - Volume 1: ICAART, ISBN 978-989-8111-66-1, pages 246-254. DOI: 10.5220/0001659502460254


in Bibtex Style

@conference{icaart09,
author={P. A. Roach and S. K. Jones and S. Perkins and I. J. Grimstead},
title={A KNOWLEDGE-RICH APPROACH TO THE RAPID ENUMERATION OF QUASI-MAGIC SUDOKU SEARCH SPACES},
booktitle={Proceedings of the International Conference on Agents and Artificial Intelligence - Volume 1: ICAART,},
year={2009},
pages={246-254},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0001659502460254},
isbn={978-989-8111-66-1},
}


in EndNote Style

TY - CONF

JO - Proceedings of the International Conference on Agents and Artificial Intelligence - Volume 1: ICAART,
TI - A KNOWLEDGE-RICH APPROACH TO THE RAPID ENUMERATION OF QUASI-MAGIC SUDOKU SEARCH SPACES
SN - 978-989-8111-66-1
AU - Roach P.
AU - Jones S.
AU - Perkins S.
AU - Grimstead I.
PY - 2009
SP - 246
EP - 254
DO - 10.5220/0001659502460254