ters is likely to become critical; and as a side-effect
rapid methods that allow for interactivity will offer
unprecedented benefits for artists in creating custom
filters.
REFERENCES
Aurenhammer, F. (1991). Voronoi diagrams–a fundamental
geometric data structure. ACM Computing Surveys,
23(3):345–405.
Butt, M. and Maragos, P. (1998). Optimum design of cham-
fer distance transforms. IEEE Trans. Image Process-
ing, 7(10):1477–1484.
Cuisenaire, O. (1999). Distance Transformation: Fast Al-
gorithms and Applications to Medical Image Process-
ing. Phd. thesis, Univ. Catholique de Louvain.
Cuntz, N. and Kolb, A. (2007). Fast hierarchical 3D dis-
tance transformations on the GPU. In Proceedings
Eurographics Short Papers, pages 93–96.
Danielsson, P. (1980). Euclidean distance mapping. Com-
puter Graphics and Image Processing, 14:227–248.
Denny, M. (2003). Algorithmic Geometry via Graphics
Hardware. Phd. thesis, Universit¨at des Saarlandes,
Saarbr¨ucken, Germany.
Fortune, S. (1986). A sweepline algorithm for Voronoi
diagrams. In ACM Symp. Computational Geometry,
pages 313–322.
Helmsen, J., Puckett, E., Colella, P., and Dorr, M. (1996).
Two new methods for simulating photolithography de-
velopment in 3D. In SPIE 2726, pages 253–261.
Hoff, K., T. Culver, J. K., Lin, M., and Manocha, D. (1999).
Fast computation of generalized Voronoi diagrams us-
ing graphics hardware. ACM Trans. on Graphics,
18(3):277–286.
Jones, M., Bærentzen, J., and Sramek, M. (2006). 3D dis-
tance fields: a survey of techniques and applications.
IEEE Trans. Visualization and Computer Graphics,
12(4):581–599.
Kulpa, Z. and Kruse, B. (1979). Methods of effective imple-
mentation of circular propagation in discrete images.
Internal Report LiTH-ISY-I-0274, Dept. of Electrical
Engineering, Link¨oping Univ., Sweden.
Mauch, S. (2003). Efficient algorithms for solving static
Hamilton-Jacobi equations. PhD thesis, California In-
stitute of Technology, Pasadena, CA.
Maurer, C., Qi, R., and Raghavan, V. (2003). A linear
time algorithm for computing exact euclidean distance
transforms of binary images in arbitrary dimensions.
IEEE Trans. Pattern Analysis and Machine Intelli-
gence, 25(2):265–270.
Mullikin, J. (1992). The vector distance transform in two
and three dimensions. CVGIP: Graphical Models and
Image Processing, 54(6):526–535.
Okabe, A., Boots, B., Sugihara, K., and Chiu, S. (1999).
Spatial Tesselations: Concepts and Applications of
Voronoi Diagrams. John Wiley & Sons Ltd.
Olsen, J. (2004). Realtime procedural terrain generation.
http://oddlabs.com/download/terrain generation.pdf.
Rong, G. and Tan, T.-S. (2006). Jump flooding in gpu with
applications to Voronoi diagram and distance trans-
form. In ACM Symp. Interactive 3D Graphics and
Games, pages 109–116.
Rosenfeld, A. and Pfalz, J. (1966). Sequential opera-
tions in digital picture processing. Journal of ACM,
13(4):471–494.
Satherly, R. and Jones, M. (2001). Vector-city vector dis-
tance transform. Computer Vision and Image Under-
standing, 82(3):238–254.
Sethian, J. (1996). A fast marching level set method for
monotonically advancing fronts. Nat’l Academy of
Sciences US-Paper Ed., 93(4):1591–1595.
Sigg, C., Peikert, R., and Gross., M. (2003). Signed dis-
tance transform using graphics hardware. In IEEE Vi-
sualization, pages 83–90.
Strzodka, R. and Telea, A. (2004). Generalized dis-
tance transforms and skeletons in graphics hardware.
In Joint EG/IEEE TVCG Symp. Visualization, pages
221–230.
Sud, A., Otaduy, M., and Manocha, D. (2004). DiFi: Fast
3D distance field computation using graphics hard-
ware. EG Computer Graphics Forum, 23(3):557–566.
Svensson, S. and Borgefors, G. (2002). Digital dis-
tance transforms in 3D images using information from
neighborhoods up to 5×5×5. Computer Vision and
Image Understanding, 88:24–53.
Telea, A. and van Wijk., J. (2002). An augmented fast
marching method for computing skeletons and center-
lines. In Symp. on Visualization, pages 251–260.
Tsitsiklis., N. (1995). Efficient algorithms for globally op-
timal trajectories. IEEE Trans. Automatic Control,
40(9):1528–1538.
Voronoi, G. (1908). Nouvelles applications des param`etres
continus `a la th´eorie des formes quadratiques.
deuxi´eme m´emoire: recherches sur les parall´elo`edres
primitifs. Reine Angewandte Mathematik, 134:198–
287.
VISAPP 2009 - International Conference on Computer Vision Theory and Applications
442