INDOOR PTZ CAMERA CALIBRATION WITH CONCURRENT PT AXES

Jordi Sanchez-Riera, Jordi Salvador, Josep R. Casas

2009

Abstract

The introduction of active (pan-tilt-zoom or PTZ) cameras in Smart Rooms in addition to fixed static cameras allows to improve resolution in volumetric reconstruction, adding the capability to track smaller objects with higher precision in actual 3D world coordinates. To accomplish this goal, precise camera calibration data should be available for any pan, tilt, and zoom settings of each PTZ camera. The PTZ calibration method proposed in this paper introduces a novel solution to the problem of computing extrinsic and intrinsic parameters for active cameras. We first determine the rotation center of the camera expressed under an arbitrary world coordinate origin. Then, we obtain an equation relating any rotation of the camera with the movement of the principal point to define extrinsic parameters for any value of pan and tilt. Once this position is determined, we compute how intrinsic parameters change as a function of zoom. We validate our method by evaluating the re-projection error and its stability for points inside and outside the calibration set.

References

  1. Agapito, L. d., Hayman, E., and Reid, I. (1999). Selfcalibration of a rotating camera with varying intrinsic parameters. In Proc. 9th British Machine Vision Conference, Southampton., pages 105-114.
  2. Bouguet, J. Y. (2007). Camera calibration toolbox for matlab. (Available for download from http://www.vision.caltech.edu/bouguetj/calib doc).
  3. Chen, Y.-S., Shih, S.-W., Hung, Y. P., and Fuh, C. S. (2001). Simple and efficient method of calibrating a motorized zoom lens. Image and Vision Computing, 19(14):1099-1110.
  4. Davis, J. and Chen, X. (2003). Calibrating pan-tilt cameras in wide-area surveillance networks. In Ninth IEEE International Conference on Computer Vision, 2003. Proceedings, number 1, pages 144-149.
  5. EVI-Lib (2006). C++ library for controlling the serial interface with sony color video cameras evi-d30, evid70, evi-d100 (http://sourceforge.net/projects/evilib/). http://sourceforge.net/projects/evilib/.
  6. Hartley, R. I. and Zisserman, A. (2000). Multiple View Geometry in Computer Vision. Cambridge University Press, ISBN: 0521623049.
  7. Heikkila, J. (2000). Geometric camera calibration using circular control points. IEEE Transactions on Pattern Analysis and Machine Intelligence, 22(10):1066- 1077.
  8. Huang, X., Gao, J., and Yang, R. (2007). Calibrating pantilt cameras with telephoto lenses. In Computer Vision - ACCV 2007, 8th Asian Conference on Computer Vision, pages I: 127-137, Tokyo, Japan.
  9. Kim, N., Kim, I., and Kim, H. (2006). Video surveillance using dynamic configuration of multiple active cameras. In IEEE International Conference on Image Processing (ICIP06), pages 1761-1764.
  10. Li, M. and Lavest, J.-M. (1996). Some aspects of zoom lens camera calibration. IEEE Transactions on Pattern Analysis and Machine Intelligence, 18(11):1105- 1110.
  11. Lim, S. N., Elgammal, A., and Davis, L. S. (2003). Image-based pan-tilt camera control in a multicamera surveillance environment. In Proceedings International Conference on Multimedia and Expo (ICME'03), volume 1, pages I-645-8.
  12. Ruiz, A., L ópez-de Teruel, P. E., and García-Mateos, G. (2002). A note on principal point estimability. In 16th International Conference on Pattern Recognition (ICPR'02), volume 2, pages 304-307.
  13. Senior, A., Hampapur, A., and Lu, M. (2005). Acquiring multi-scale images by pan-tilt-zoom control and automatic multi-camera calibration. In Seventh IEEE Workshops on Application of Computer Vision (WACV/MOTION'05), pages 433-438.
  14. Sinha, S. and Pollefeys, M. (2004). Towards calibrating a pan-tilt-zoom camera network. In OMNIVIS 2004, ECCV Conference Workshop CD-rom proceedings.
  15. Svoboda, T., Martinec, D., and Pajdla, T. (2005). A convenient multi-camera self-calibration for virtual environments. PRESENCE: Teleoperators and Virtual Environments, 14(4):407-422.
  16. Tsai, . R. Y. (1987). A versatile camera calibration technique for high-accuracy 3d machine vision metrology using off-the-shelf tv cameras and lenses. IEEE J. of Robotics and Automation, RA-3(4):323-344.
  17. Willson, R. G. (1994). Modeling and Calibration of Automated Zoom Lenses. PhD thesis, Carnegie Mellon University, Pittsburgh, PA, USA.
  18. Zhang, Z. (2000). A flexible new technique for camera calibration. IEEE Transactions on Pattern Analysis and Machine Intelligence, 22(11):1330-1334.
Download


Paper Citation


in Harvard Style

Sanchez-Riera J., Salvador J. and R. Casas J. (2009). INDOOR PTZ CAMERA CALIBRATION WITH CONCURRENT PT AXES . In Proceedings of the Fourth International Conference on Computer Vision Theory and Applications - Volume 2: VISAPP, (VISIGRAPP 2009) ISBN 978-989-8111-69-2, pages 10-15. DOI: 10.5220/0001754900100015


in Bibtex Style

@conference{visapp09,
author={Jordi Sanchez-Riera and Jordi Salvador and Josep R. Casas},
title={INDOOR PTZ CAMERA CALIBRATION WITH CONCURRENT PT AXES},
booktitle={Proceedings of the Fourth International Conference on Computer Vision Theory and Applications - Volume 2: VISAPP, (VISIGRAPP 2009)},
year={2009},
pages={10-15},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0001754900100015},
isbn={978-989-8111-69-2},
}


in EndNote Style

TY - CONF
JO - Proceedings of the Fourth International Conference on Computer Vision Theory and Applications - Volume 2: VISAPP, (VISIGRAPP 2009)
TI - INDOOR PTZ CAMERA CALIBRATION WITH CONCURRENT PT AXES
SN - 978-989-8111-69-2
AU - Sanchez-Riera J.
AU - Salvador J.
AU - R. Casas J.
PY - 2009
SP - 10
EP - 15
DO - 10.5220/0001754900100015