HUMAN VISION SIMULATION IN THE BUILT ENVIRONMENT

Qunli Chen, Chengyu SUN, Bauke de VRIES

2009

Abstract

This paper first presents a brief review on visual perception in the built environment and the Standard Feature Model of visual cortex (SFM); following experiments are presented for architectural cue recognition (door, wall and doorway) using SFM feature-based model. Based on the findings of these experiments, we conclude that the visual differences between architectural cues are too subtle to realistically simulate human vision for the SFM.

References

  1. Arthur, P., & Passini, R., 1992. Wayfinding: People, Signs, and Architecture. New York: McGraw-Hill Book Company.
  2. Burl, M., Weber, M., & Perona, P., 1998. A probabilistic approach to object recognition using local photometry and global geometry. Proc. ECCV (pp. 628-641).
  3. Crosby, A. W., 1997. The measure of reality: Quantification and Western society 1250-1600. Cambridge: University Press.
  4. Gibson, J. J., 1966. The senses considered as perceptual systems. Boston: Houghton Mifflin.
  5. Hershberger, R. G., 1974. Predicting the meaning of architecture, in Jon Lang et al. (Eds.), Designing for Human Behavior: Architecture and the Behavioral Sciences (pp. 147-156). Stroudsburg: Dowden, Hutchinson and Ross.
  6. Lam, W. M. C., 1992. Perception & Lighting as formgivers for architecture. New York: Van Nostrand Reinhold.
  7. Riesenhuber, M., & Poggio, T., 1999. Hierarchical Models of Object Recognition in Cortex, Nature Neuroscience, vol. 2, no. 11 (pp.1019-1025).
  8. Serre, T., & Riesenhuber, M., 2004. Realistic Modeling of Simple and Complex Cell Tuning in the HMAX Model, and Implications for Invariant Object Recognition in Cortex,” CBCL Paper 239/AI Memo, Massachusetts Inst. of Technology, Cambridge.
  9. Serre, T., Kouh, M., Cadieu, C., Knoblich, U., Kreiman, G., & Poggio, T., 2005. A Theory of Object Recognition: Computations and Circuits in the Feed forward Path of the Ventral Stream in Primate Visual Cortex. AI Memo/CBCL Memo.
  10. Serre, T., Wolf, L., & Poggio, T., 2004. A new biologically motivated framework for robust object recognition, CBCL Paper #243/AI Memo #2004-026, Massachusetts Institute of Technology, Cambridge, MA.
  11. Serre, T., Wolf, L., Bileschi, S., Riesenhuber, M., & Poggio, T., 2007. Robust Object Recognition with Cortex-Like Mechanisms, IEEE Transactions on pattern analysis and machine intelligence (pp.411-426).
Download


Paper Citation


in Harvard Style

Chen Q., SUN C. and de VRIES B. (2009). HUMAN VISION SIMULATION IN THE BUILT ENVIRONMENT . In Proceedings of the Fourth International Conference on Computer Vision Theory and Applications - Volume 1: VISAPP, (VISIGRAPP 2009) ISBN 978-989-8111-69-2, pages 385-388. DOI: 10.5220/0001768103850388


in Bibtex Style

@conference{visapp09,
author={Qunli Chen and Chengyu SUN and Bauke de VRIES},
title={HUMAN VISION SIMULATION IN THE BUILT ENVIRONMENT},
booktitle={Proceedings of the Fourth International Conference on Computer Vision Theory and Applications - Volume 1: VISAPP, (VISIGRAPP 2009)},
year={2009},
pages={385-388},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0001768103850388},
isbn={978-989-8111-69-2},
}


in EndNote Style

TY - CONF
JO - Proceedings of the Fourth International Conference on Computer Vision Theory and Applications - Volume 1: VISAPP, (VISIGRAPP 2009)
TI - HUMAN VISION SIMULATION IN THE BUILT ENVIRONMENT
SN - 978-989-8111-69-2
AU - Chen Q.
AU - SUN C.
AU - de VRIES B.
PY - 2009
SP - 385
EP - 388
DO - 10.5220/0001768103850388