Table 1: Classification results of LSSVM with different input space dimension and kernels.
Input Space Kernel Accuracy Sensitivity Specificity
{PTT,RRi} Cubic-Polynomial 87.05 96.80 66.14
{r,θ} Cubic-Polynomial 87.59 95.40 70.86
{PTT,RRi,Age} Cubic-Polynomial 82.91 98.20 50.14
{r,θ,Age} Cubic-Polynomial 87.86 100.00 61.86
{PTT,RRi,r,θ,Age} Cubic-Polynomial 86.82 98.53 61.71
{PTT,RRi} RBF 82.18 94.20 56.43
{r,θ} RBF 78.59 88.93 56.43
{PTT,RRi,Age} RBF 91.73 98.60 77.00
{r,θ,Age} RBF 90.45 98.33 73.57
{PTT,RRi,r,θ,Age} RBF 93.32 99.87 79.29
Abbreviations: Accuracy = (TP+ TN)/(POS+ NEG), Sensitivity = TP/POS, Specificity = TN/NEG: TP is true
positives; TN is true negatives; POS is total positives; NEG is total negatives.
ACKNOWLEDGEMENTS
This work was supported in part by the Australian Re-
search Council.
REFERENCES
Annane, D., Trabold, F., Sharshar, T., Jarrin, I., Blanc, A.,
Raphael, J., and Gajdos, P. (1999). Inappropriate sym-
pathetic activation at onset of septic shock: a spectral
analysis approach. American Journal of Respiratory
and Critical Care Medicine, 160(2):458–465.
Bone, R., Balk, R., Cerra, F., Dellinger, R., Fein, A.,
Knaus, W., Schein, R., and Sibbald, W. (1992).
Definitions for sepsis and organ failure and guide-
lines for the use of innovative therapies in sepsis.
The ACCP/SCCM Consensus Conference Commit-
tee. American College of Chest Physicians/Society of
Critical Care Medicine. Chest, 101(6):1644–55.
Li, D., Yeh, C., Tsai, T., Fang, Y., and Hu, S. (2007). Ac-
quiring knowledge with limited experience. Expert
Systems, 24(3):162–170.
Mainardi, L., Yli-Hankala, A., Korhonen, I., Signorini, M.,
Bianchi, A., Takala, J., Nieminen, K., and Cerutti,
S. (1997). Monitoring the autonomic nervous system
in the ICU through cardiovascular variability signals.
IEEE Engineering in Medicine and Biology Maga-
zine, 16(6):64–75.
Malik, M., Bigger, J., Camm, A., Kleiger, R., Malliani, A.,
Moss, A., and Schwartz, P. (1996). Heart rate vari-
ability: standards of measurement, physiological in-
terpretation, and clinical use. European Heart Jour-
nal, 17(3):354–381.
Martin, G., Mannino, D., and Moss, M. (2006). The ef-
fect of age on the development and outcome of adult
sepsis*. Critical Care Medicine, 34(1):15.
Payne, R., Symeonides, C., Webb, D., and Maxwell, S.
(2006). Pulse transit time measured from the ECG:
an unreliable marker of beat-to-beat blood pressure.
Journal of Applied Physiology, 100(1):136–141.
Pontet, J., Contreras, P., Curbelo, A., Medina, J., Noveri, S.,
Bentancourt, S., and Migliaro, E. (2003). Heart rate
variability as early marker of multiple organ dysfunc-
tion syndrome in septic patients. Journal of Critical
Care, 18(3):156–163.
Rivers, E., McIntyre, L., Morro, D., and Rivers, K. (2005).
Early and innovative interventions for severe sepsis
and septic shock: taking advantage of a window of
opportunity. Canadian Medical Association Journal,
173(9):1054–1065.
Rivers, E., Nguyen, B., Havstad, S., Ressler, J., Muzzin,
A., Knoblich, B., Peterson, E., and Tomlanovich, M.
(2001). Early goal-directed therapy in the treatment
of severe sepsis and septic shock. The New England
Journal of Medicine, 345(19):1368–1377.
Suykens, J. and Vandewalle, J. (1999). Least squares sup-
port vector machine classifiers. Neural Processing
Letters, 9:293–300.
Vapnik, V. (2000). The Nature of Statistical Learning The-
ory. Springer.
BIOSIGNALS 2009 - International Conference on Bio-inspired Systems and Signal Processing
410