ACKNOWLEDGEMENTS
The authors would like to thank Marjolein van der
Zwaag and Stijn de Waele for their comments on an
earlier version of this paper. Furthermore, we would
like to thank the anonymous reviewers, who provided
us the opportunity to improve this paper.
REFERENCES
Bailenson, J. N., Pontikakis, E. D., Mauss, I. B., Gross, J. J.,
Jabon, M. E., Hutcherson, C. A., Nass, C., and John,
O. (2008). Real-time classification of evoked emo-
tions using facial feature tracking and physiological
responses. International Journal of Human-Computer
Studies, 66(5):303–317.
Berntson, G. G., Bigger, J. T., Eckberg, D. L., Grossman,
P., Kaufmann, P. G., Malik, M., Nagaraja, H. N.,
Porges, S. W., Saul, J. P., Stone, P. H., and van der
Molen, M. W. (1997). Heart rate variability: Origins,
methods, and interpretive caveats. Psychophysiology,
34(6):623–648.
Boucsein, W. (1992). Electrodermal activity. New York,
NY, USA: Plenum Press.
Cacioppo, J. and Tassinary, L. (1990). Inferring psychologi-
cal significance from physiological signals. American
Psychologist, 45(1):16–28.
Choi, A. and Woo, W. (2005). Physiological sensing and
feature extraction for emotion recognition by exploit-
ing acupuncture spots. Lecture Notes in Computer
Science (Affective Computing and Intelligent Interac-
tion), 3784:590–597.
Cowie, R., Douglas-Cowie, E., Tsapatsoulis, N., Votsis,
G., Kollias, S., Fellenz, W., and Taylor, J. G. (2001).
Emotion recognition in human–computer interaction.
IEEE Signal Processing Magazine, 18(1):32–80.
Duke, A. and Novicevic, M. M. (2008). Historical founda-
tions of social effectiveness? Dale Carnegie’s princi-
ples. Social Influences, 3(2):132–142.
Frederickson, B. L., Manusco, R. A., Branigan, C., and Tu-
gade, M. M. (2000). The undoing effect of positive
emotions. Motivation and Emotion, 24(4):237–257.
Gendolla, G. H. E. and Brinkman, K. (2005). The role
of mood states in self-regulation: Effects on action
preferences and resource mobilization. European Psy-
chologist, 10(3):187–198.
Grossman, P. and Taylor, E. W. (2007). Toward understand-
ing respiratory sinus arrhythmia: Relations to cardiac
vagal tone, evolution and biobehavioral functions. Bi-
ological Psychology, 74(2):263–285.
Haag, A., Goronzy, S., Schaich, P., and Williams, J. (2004).
Emotion recognition using bio-sensors: First steps to-
wards an automatic system. Lecture notes in computer
science (Affective Dialogue Systems), 3068:36–48.
Hazlett, R. L. and Hazlett, S. Y. (1999). Emotional response
to television commercials: Facial EMG vs. self-report.
Journal of Advertising Research, 39(2):7–23.
Healey, J. A. and Picard, R. W. (2005). Detecting stress dur-
ing real-world driving tasks using physiological sen-
sors. IEEE Transactions on Intelligent Transportation
Systems, 6(2):156–166.
Heath, L. (2001). Triangulation: Methodology, pages
15901–15906. Elsevier Science Ltd.: Oxford, UK,
1 edition. ISBN: 978-0-08-043076-8.
Katsis, C. D., Katertsidis, N., Ganiatsas, G., and Fotiadis,
D. I. (2008). Toward emotion recognition in car-racing
drivers: A biosignal processing approach. IEEE
Transactions on Systems, Man, and Cybernetics–Part
A: Systems and Humans, 38(3):502–512.
Kim, J. and Andr´e, E. (in press). Emotion recognition
based on physiological changes in music listening.
IEEE Transactions on Pattern Analysis Machine In-
telligence.
Kim, K. H., Bang, S. W., and Kim, S. R. (2004). Emo-
tion recognition system using short-term monitoring
of physiological signals. Medical & Biological Engi-
neering & Computing, 42(3):419–427.
Leon, E., Clarke, G., Callaghan, V., and Sepulveda, F.
(2007). A user-independent real-time emotion recog-
nition system for software agents in domestic environ-
ments. Engineering Applications of Artificial Intelli-
gence, 20(3):337–345.
Lisetti, C. L. and Nasoz, F. (2004). Using noninvasive wear-
able computers to recognize human emotions from
physiological signals. EURASIP Journal on Applied
Signal Processing, 2004(11):1672–1687.
Liu, C., Conn, K., Sarkar, N., and Stone, W. (2008).
Physiology-based affect recognition for computer-
assisted intervention of children with Autism Spec-
trum Disorder. International Journal of Human-
Computer Studies, 66(9):662–677.
Minsky, M. (2006). The Emotion Machine: Commonsense
Thinking, Artificial Intelligence, and the Future of the
Human Mind. New York, NY, USA: Simon & Schus-
ter.
Nasoz, F., Alvarez, K., Lisetti, C. L., and Finkelstein, N.
(2003). Emotion recognition from physiological sig-
nals for presence technologies. International Journal
of Cognition, Technology and Work, 6:4–14.
Picard, R. W. (1997). Affective Computing. Boston MA,
USA: MIT Press.
Picard, R. W., Vyzas, E., and Healey, J. (2001). Toward
machine emotional intelligence: Analysis of affec-
tive physiological state. IEEE Transactions on Pat-
tern Analysis and Machine Intelligence, 23(10):1175–
1191.
Poels, K. and Dewitte, S. (2006). How to capture the heart?
reviewing 20 years of emotion measurement in adver-
tising. Journal of Advertising Research, 46(1):18–37.
Rani, P., Liu, C., Sarkar, N., and Vanman, E. (2006). An em-
pirical study of machine learning techniques for affect
recognition in human-robot interaction. Pattern Anal-
ysis & Applications, 9(1):58–69.
BIOSIGNALS 2009 - International Conference on Bio-inspired Systems and Signal Processing
432