Di Salle, F. (2003). Real-time independent com-
ponent analysis of fmri time-series. NeuroImage,
20(4):2209–2224.
Frackowiak, R. S. J., Friston, K. J., Frith, C. D., Dolan,
R. J., Price, C. J., Zeki, S., Ashburner, J. T., and Penny,
W. D. (2004). Human Brain Function. Academic
Press.
Friston, K. J. (1994). Functional and effective connectivity
in neuroimaging: A synthesis. Human Brain Map-
ping, 2:56–78.
Friston, K. J., Ashburner, J., Kiebel, S., Nichols, T., and
Penny, W. (2006). Statistical Parametric Mapping:
The Analysis of Functional Brain Images. Elsevier,
London.
Friston, K. J., Holmes, A. P., Poline, J., Gransby, P. J.,
Williams, S. C. R., Frackowiak, J., R. S., and Turner,
R. (1995). Analysis of fmri time - series revisited.
NeuroImage, 2(1):45–53.
Friston, K. J., Jezzard, P., and Turner, R. (1994). Analysis
of functional mri time-series. Human Brain Mapping,
1(2):153–171.
Gilks, W. R., Richardson, S., and Spiegelhalter, D. J.
(1996). Markov Chain Monte Carlo in Practice.
Chapman & Hall/CRC.
Gossl, C., Auer, D. P., and Fahrmeir, L. (1999). A bayesian
approach for spatial connectivity in fmri. Poster No.
483 Biometrics, 57:554–562.
Gossl, C., Auer, D. P., and Fahrmeir, L. (2001). Bayesian
spatiotemporal inference in functional magnetic reso-
nance imaging. Biometrics, 57(2):554–562.
Goutte, C., Toft, P., Rostrup, E., Nielsen, F. A., and Hansen,
L. K. (1999). On clustering fmri time series. Neu-
roImage, 9(3):298–310.
Harrison, L. M., Penny, W., Ashburner, J., Trujillo-Barreto,
N., and Friston, K. J. (2007). Diffusion-based spatial
priors for imaging. NeuroImage, 38(4):677–695.
Hartvig, N. and Jensen, J. (2000). Spatial mixture
modelling of fmri data. Human Brain Mapping,
11(4):233–248.
Holmes, A. (1995). Statistical Issues in Functional Brain
Mapping. Chapter 5 – An Empirical Bayesian Ap-
proach. PhD thesis.
Huang, H. (1999). PACS: basic principles and applications.
Wiley-Liss, New York.
Jezzard, P., Matthews, P. M., and Smith, S. M. (2001).
Functional MRI: An introduction to methods. Oxford
University Press, New York.
Katanoda, K., Matsuda, Y., and Sugishita, M. (2002). A
spatio-temporal regression model for the analysis of
functional mri data. NeuroImage, 17(3):1415–1428.
Kornak, J. (2000). Bayesian Spatial Inference from Haemo-
dynamic Response Parameters in Functional Mag-
netic Resonance Imaging. PhD thesis, University of
Nottingham.
Lange, N. and Zeger, S. L. (1997). Non - linear fourier
time series analysis for human brain mapping by func-
tional magnetic resonance imaging. Applied Statistics,
46(1):1–29.
McKeown, M. J., Hansen, L. K., , and Sejnowsk, T. J.
(2003). Independent component analysis of functional
mri: what is signal and what is noise? Current Opin-
ion in Neurobiology, 13(5):620–629.
Ogawa, S., Lee, T. M., Kay, A. R., and Tank, D. W. (1990).
Brain magnetic resonance imaging with contrast de-
pendent on blood oxygenation. Proceedings of the
National Academy of Sciences of the United States of
America, 87(24):9868–9872.
Penny, W. D., Trujilllo-Barreto, N. J., and Friston, K. J.
(2005). Bayesian fmri time series analysis with spatial
priors. NeuroImage, 24(2):350–362.
Porill, J., Stone, J. V., Mayhew, J. E. W., Berwick, J., and
Coffey, P. (1999). Spatio - temporal data analysis us-
ing weak linear models. In Mardia, K., otro, and otro,
editors, Spatial Temporal Modelling and its Applica-
tions, pages 17–20.
Quir
´
os, A., Montes, R., and Hernandez, J. (2006). A fully
bayesian two - stage model for detecting brain ac-
tivity in fmri. Lecture Notes in Computer Science,
4345:334–345.
Rue, H. and Held, L. (2005). Gaussian Markov Ran-
dom Fields: Theory and Applications, volume 104
of Monographs on Statistics and Applied Probability.
Chapman & Hall/CRC, London.
Sj
¨
ostrand, K., Lund, T. E., Madsen, K. H., and Larsen,
R. (2006). Sparse PCA, a new method for unsuper-
vised analyses of fmri data. In Proc. International So-
ciety of Magnetic Resonance In Medicine - ISMRM
2006, Seattle, Washington, USA, Berkeley, CA, USA.
ISMRM.
Winkler, G. (2003). Image Analysis, Random Fields and
Markov Chain Monte Carlo Methods. A Mathematical
Introduction. Springer, cop.
Woolrich, M. W., Behrens, T. E. J., and Smith, S. M.
(2004a). Constrained linear basis sets for hrf
modelling using variational bayes. NeuroImage,
21(4):1748–1761.
Woolrich, M. W., Jenkinson, M., Brady, J. M., and Smith,
S. M. (2004b). Fully bayesian spatio - temporal mod-
eling of fmri data. IEEE Transactions on Medical
Imaging, 23(2):213–231.
BRAIN ACTIVITY DETECTION - Statistical Analysis of fMRI Data
439