SOFT CATEGORIZATION AND ANNOTATION OF IMAGES WITH RADIAL BASIS FUNCTION NETWORKS

Moreno Carullo, Elisabetta Binaghi, Ignazio Gallo

2009

Abstract

This work focuses on fast approaches for image retrieval and classification by employing simple features to build image signatures. For this purpose a neural model for soft classification and automatic image annotation is proposed. The salient aspects of this solution are: a) the employment of a Radial Basis Function Network built on top of an image retrieval distance metric b) a soft learning strategy for annotation handling. Experiments have been conducted on a subset of the Corel image dataset for evaluation and comparative analysis.

References

  1. Almeida, J., Rocha, A., Torres, R., and Goldenstein, S. (2008). Making colors worth more than a thousand words. In SAC 7808: Proceedings of the 2008 ACM symposium on Applied computing, pages 1180-1186, New York, NY, USA. ACM.
  2. Andrews, S., Tsochantaridis, I., and Hofmann, T. (2003). Support vector machines for multiple-instance learning. In Advances in Neural Information Processing Systems 15, pages 561-568. MIT Press.
  3. Binaghi, E., Brivio, P. A., Ghezzi, P., and Rampini, A. (1999). A fuzzy set-based accuracy assessment of soft classification. Pattern Recogn. Lett., 20(9):935-948.
  4. Bishop, C. M. (1996). Neural networks for pattern recognition. Oxford University Press, Oxford, UK.
  5. Chen, Y. and Wang, J. Z. (2004). Image categorization by learning and reasoning with regions. J. Mach. Learn. Res., 5:913-939.
  6. Congalton, R. (1991). A review of assessing the accuracy of classifications of remotely sensed data. Remote sensing of environment, 37(1):35-46.
  7. Datta, R., Joshi, D., Li, J., James, and Wang, Z. (2007). Image retrieval: Ideas, influences, and trends of the new age. ACM Computing Surveys, 39.
  8. Daubechies, I. (1992). Ten lectures on wavelets. Society for Industrial and Applied Mathematics, Philadelphia, PA, USA.
  9. Frakes, W. B. and Baeza-Yates, R. A., editors (1992). Information Retrieval: Data Structures & Algorithms. Prentice-Hall.
  10. Grauman, K. and Darrell, T. (2005). The pyramid match kernel: Discriminative classification with sets of image features. In ICCV, pages 1458-1465.
  11. Hartman, E., Keeler, J. D., and Kowalski, J. M. (1990). Layered neural networks with gaussian hidden units as universal approximations. Neural Comput., 2(2):210- 215.
  12. Jain, A., Duin, R., and J.Mao (2000). Statistical pattern recognition: A review. IEEE Transactions on Pattern Analysis and Machine Intelligence, 22(1):4-37.
  13. Lazebnik, S., Schmid, C., and Ponce, J. (2006). Beyond bags of features: Spatial pyramid matching for recognizing natural scene categories. In CVPR 7806: Proceedings of the 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pages 2169-2178, Washington, DC, USA. IEEE Computer Society.
  14. Li, J. and Wang, J. Z. (2008). Real-time computerized annotation of pictures. IEEE Transactions on Pattern Analysis and Machine Intelligence, 30(6).
  15. Lv, Q., Josephson, W., Wang, Z., Charikar, M., and Li, K. (2006). Ferret: a toolkit for content-based similarity search of feature-rich data. In EuroSys 7806: Proceedings of the 1st ACM SIGOPS/EuroSys European Conference on Computer Systems 2006, pages 317-330, New York, NY, USA. ACM.
  16. Moody, J. E. and Darken, C. (1989). Fast learning in networks of locally-tuned processing units. Neural Computation, 1:281-294.
  17. Rubner, Y., Tomasi, C., and Guibas, L. J. (2000). The earth mover's distance as a metric for image retrieval. Int. J. Comput. Vision, 40(2):99-121.
  18. Shotton, J., Johnson, M., and Cipolla, R. (2008). Semantic texton forests for image categorization and segmentation. In Semantic Texton Forests for Image Categorization and Segmentation.
  19. Smeulders, A. W. M., Worring, M., Santini, S., Gupta, A., and Jain, R. (2000). Content-based image retrieval at the end of the early years. IEEE Trans. Pattern Anal. Mach. Intell., 22(12):1349-1380.
  20. Swain, M. and Ballard, D. (1990). Indexing via color histograms. Computer Vision, 1990. Proceedings, Third International Conference on, pages 390-393.
  21. Vailaya, A., Member, A., Figueiredo, M. A. T., Jain, A. K., Zhang, H.-J., and Member, S. (2001). Image classification for content-based indexing. IEEE Transactions on Image Processing, 10:117-130.
Download


Paper Citation


in Harvard Style

Carullo M., Binaghi E. and Gallo I. (2009). SOFT CATEGORIZATION AND ANNOTATION OF IMAGES WITH RADIAL BASIS FUNCTION NETWORKS . In Proceedings of the Fourth International Conference on Computer Vision Theory and Applications - Volume 2: VISAPP, (VISIGRAPP 2009) ISBN 978-989-8111-69-2, pages 309-314. DOI: 10.5220/0001785203090314


in Bibtex Style

@conference{visapp09,
author={Moreno Carullo and Elisabetta Binaghi and Ignazio Gallo},
title={SOFT CATEGORIZATION AND ANNOTATION OF IMAGES WITH RADIAL BASIS FUNCTION NETWORKS},
booktitle={Proceedings of the Fourth International Conference on Computer Vision Theory and Applications - Volume 2: VISAPP, (VISIGRAPP 2009)},
year={2009},
pages={309-314},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0001785203090314},
isbn={978-989-8111-69-2},
}


in EndNote Style

TY - CONF
JO - Proceedings of the Fourth International Conference on Computer Vision Theory and Applications - Volume 2: VISAPP, (VISIGRAPP 2009)
TI - SOFT CATEGORIZATION AND ANNOTATION OF IMAGES WITH RADIAL BASIS FUNCTION NETWORKS
SN - 978-989-8111-69-2
AU - Carullo M.
AU - Binaghi E.
AU - Gallo I.
PY - 2009
SP - 309
EP - 314
DO - 10.5220/0001785203090314