ASSESSING THE VARIABILITY OF INTERNAL BRAIN STRUCTURES USING PCA ON SAMPLED SURFACE POINTS

Darwin Martínez, Isabelle Bloch, Tiberio Hernández

2009

Abstract

In this paper we propose to analyze the variability of brain structures using principal component analysis (PCA). We rely on a data base of registered and segmented 3D MRI images of normal subjects. We propose to use as input of PCA sampled points on the surface of the considered objects, selected using uniformity criteria or based on mean and Gaussian curvatures. Results are shown on the lateral ventricles. The main variation tendencies are observed in the orthogonal eigenvector space. Dimensionality reduction can be achieved and the variability of each landmark point is accurately described using the first three components.

References

  1. Bai, B., Kantor, P., Shokoufandeh, A., and Silver, D. (2007). fMRI brain image retrieval on ICA components. In Proceedings of ENC'07, pages 10-17.
  2. Berar, M. (2007). Modèles statistiques de la forme d'organes du corps humain, application à la reconstruction faciale. PhD thesis, Institut National Polytechnique de Grenoble, Grenoble, France.
  3. Besl, P. J. and McKay, N. D. (1992). A method for registration of 3-d shapes. IEEE Transactions on Pattern Analysis and Machine Intelligence, 14(2):239-256.
  4. Borgefors, G. (1986). Distance transformations in digital images. Computer Vision, Graphics, and Image Processing, 34(3):344-371.
  5. Cardoso, J.-F. and Comon, P. (1996). Independent component analysis, a survey of some algebraic methods. In ISCAS'96: 1996 IEEE International Symposium on Circuits and Systems, volume 2, pages 93-96.
  6. Cootes, T. F., Edwards, G., and Taylor, C. J. (2001). Active appearance models. IEEE Transactions on Pattern Analysis and Machine Intelligence, 23(6):681-685.
  7. Ekenel, H. K. and Sankur, B. (2004). Feature selection in the independent component subspace for face recognition. Pattern Recognition Letters, 25(12):1377-1388.
  8. Hill, A., Cootes, T. F., and Taylor, C. J. (1996). Active shape models and the shape approximation problem. Image and Vision Computing, 14(8):601-607.
  9. Larsen, R. and Hilger, K. B. (2003). Statistical shape analysis using non-Euclidean metrics. Medical Image Analysis, 7(4):417-423.
  10. Lötjönen, J., Kivistöb, S., Koikkalainenc, J., Smuteka, D., and Lauermab, K. (2004). Statistical shape model of atria, ventricles and epicardium from short- and longaxis MR images. Medical Image Analysis, 8:371-386.
  11. Moreno, A., Chambon, S., Santhanam, A., Rolland, J., Angelini, E., and Bloch, I. (2007). CT-PET Landmarkbased Registration using a Dynamic Lung Model. In International Conference on Image Analysis and Processing ICIAP 2007, pages 691-696, Modena, Italy.
  12. Moreno, A., Chambon, S., Santhanam, A., Rolland, J., Angelini, E., and Bloch, I. (2008). Combining a Breathing Model and Tumor-Specific Rigidity Constraints for Registration of CT-TEP Thoracic Data. Computer Aided Surgery, 13(5):281-298.
  13. Nain, D., Haker, S., Bobick, A., and Tannenbaum, A. (2007). Multiscale 3-D shape representation and segmentation using spherical wavelets. IEEE Transactions on Medical Imaging, 26(4):598-618.
  14. Pohl, K. M., Warfield, S. K., Kikinis, R., Grimson, W. E. L., and Wells, W. M. (2004). Coupling statistical segmentation and PCA shape modeling. In Medical Image Computing and Computer-Assisted Intervention MICCAI 2004, volume LNCS 3216, pages 151-159.
  15. Rogez, G. and Orrite, C. (2005). Human figure segmentation using independent component analysis. In IbPRIA Pattern Recognition and Image Analysis, volume LNCS 3522, pages 300-307.
  16. Suinesiaputra, A., Ü zümcü, M., Frangi, A., Kaandorp, T., Reiber, J., and Lelieveldt, B. (2004). Detecting regional abnormal cardiac contraction in short-axis MR images using independent component analysis. In Medical Image Computing and Computer-Assisted Intervention, volume LNCS 5032, pages 737-744.
  17. Taron, M., Paragios, N., and Jolly, M.-P. (2007). From uncertainties to statistical model building and segmentation of the left ventricle. ICCV 2007. IEEE 11th International Conference on Computer Vision, pages 1-8.
  18. Yang, Q. and Ding, X. (2002). Symmetrical PCA in face recognition. In International Conference on Image Processing, volume 2, pages 97-100.
Download


Paper Citation


in Harvard Style

Martínez D., Bloch I. and Hernández T. (2009). ASSESSING THE VARIABILITY OF INTERNAL BRAIN STRUCTURES USING PCA ON SAMPLED SURFACE POINTS . In Proceedings of the Fourth International Conference on Computer Vision Theory and Applications - Volume 2: VISAPP, (VISIGRAPP 2009) ISBN 978-989-8111-69-2, pages 172-179. DOI: 10.5220/0001790801720179


in Bibtex Style

@conference{visapp09,
author={Darwin Martínez and Isabelle Bloch and Tiberio Hernández},
title={ASSESSING THE VARIABILITY OF INTERNAL BRAIN STRUCTURES USING PCA ON SAMPLED SURFACE POINTS},
booktitle={Proceedings of the Fourth International Conference on Computer Vision Theory and Applications - Volume 2: VISAPP, (VISIGRAPP 2009)},
year={2009},
pages={172-179},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0001790801720179},
isbn={978-989-8111-69-2},
}


in EndNote Style

TY - CONF
JO - Proceedings of the Fourth International Conference on Computer Vision Theory and Applications - Volume 2: VISAPP, (VISIGRAPP 2009)
TI - ASSESSING THE VARIABILITY OF INTERNAL BRAIN STRUCTURES USING PCA ON SAMPLED SURFACE POINTS
SN - 978-989-8111-69-2
AU - Martínez D.
AU - Bloch I.
AU - Hernández T.
PY - 2009
SP - 172
EP - 179
DO - 10.5220/0001790801720179