LOCAL HISTOGRAM BASED DESCRIPTORS FOR RECOGNITION

Oskar Linde, Lars Bretzner

2009

Abstract

This paper proposes a set of new image descriptors based on local histograms of basic operators. These descriptors are intended to serve in a first-level stage of an hierarcical representation of image structures. For reasons of efficiency and scalability, we argue that descriptors suitable for this purpose should be able to capture and separate invariant and variant properties. Unsupervised clustering of the image descriptors from training data gives a visual vocabulary, which allow for compact representations. We demonstrate the representational power of the proposed descriptors and vocabularies on image categorization tasks using well-known datasets. We use image representations via statistics in form of global histograms of the underlying visual words, and compare our results to earlier reported work.

References

  1. Agarwal, A. and Triggs, B. (2006). Hyperfeatures: Multilevel local coding for visual recognition. In Proc. ECCV, pages I: 30-43.
  2. Bosch, A., Zisserman, A., and Munoz, X. (2007). Image classification using random forests and ferns. In Proc. ICCV, Rio de Janeiro, Brazil.
  3. Chang, C.-C. and Lin, C.-J. (2001). LIBSVM: a library for support vector machines. Software available at http://www.csie.ntu.edu.tw/cjlin/libsvm.
  4. Csurka, G., Bray, C., Dance, C., and Fan, L. (2004). Visual categorization with bags of keypoints. In Proc. ECCV International Workshop on Statistical Learning in Computer Vision.
  5. Dorkó, G. and Schmid, C. (2005). Object class recognition using discriminative local features. Rapport de recherche RR-5497, INRIA - Rhone-Alpes.
  6. Fei-Fei, L. and Perona, P. (2005). A bayesian hierarchical model for learning natural scene categories. In Proc. IEEE Conf. CVPR, pages II: 524-531.
  7. Fergus, R., Perona, P., and Zisserman, A. (2003). Object class recognition by unsupervised scale-invariant learning. In Proc. IEEE Conf. CVPR, pages II:264- 271, Madison, Wisconsin.
  8. Jurie, F. and Triggs, B. (2005). Creating efficient codebooks for visual recognition. In Proc. ICCV.
  9. Koenderink, J. J. and Doorn, A. J. V. (1999). The structure of locally orderless images. Int. J. Comput. Vision, 31(2-3):159-168.
  10. Lazebnik, S., Schmid, C., and Ponce, J. (2006). Beyond bags of features: Spatial pyramid matching for recognizing natural scene categories. In Proc. IEEE CVPR, pages 2169-2178, Washington, DC, USA. IEEE Computer Society.
  11. Leibe, B. and Schiele, B. (2003). Interleaved object categorization and segmentation. In Proc. British Machine Vision Conference, Norwich, GB.
  12. Linde, O. and Bretzner, L. (2008). Local histogram based descriptors for recognition. Technical report, CVAP/CSC/KTH.
  13. Linde, O. and Lindeberg, T. (2004). Object recognition using composed receptive field histograms of higher dimensionality. In ICPR, Cambridge, U.K.
  14. Lindeberg, T. (1994). Scale-Space Theory in Computer Vision. Kluwer Academic Publishers, Dordrecht, Netherlands.
  15. Lowe, D. (2004). Distinctive image features from scaleinvariant keypoints. In IJCV, vol. 20, pp. 91-110.
  16. Nene, S. A., Nayar, S. K., and Murase, H. (1996). Columbia object image library (COIL-100). Technical report CUCS-006-96, CAVE, Columbia University.
  17. Nilsback, M. and Caputo, B. (2004). Cue integration through discriminative accumulation. In Proc. IEEE Conf. CVPR, pages II:578-585.
  18. Obdržálek, v. and Matas, J. (2002). Object recognition using local affine frames on distinguished regions. In British Machine Vision Conference, pages 113-122.
  19. Puzicha, J., Hofmann, T., and Buhmann, J. (1999). Histogram clustering for unsupervised segmentation and image retrieval. Pattern Recognition Letters, 20:899- 909(11).
  20. Schiele, B. and Crowley, J. L. (2000). Recognition without correspondence using multidimensional receptive field histograms. IJCV, 36(1):31-50.
  21. Schmid, C. (2004). Weakly supervised learning of visual models and its application to content-based retrieval. IJCV, 56(1-2):7-16.
  22. Swain, M. and Ballard, D. (1991). Color indexing. IJCV, 7(1):11-32.
Download


Paper Citation


in Harvard Style

Linde O. and Bretzner L. (2009). LOCAL HISTOGRAM BASED DESCRIPTORS FOR RECOGNITION . In Proceedings of the Fourth International Conference on Computer Vision Theory and Applications - Volume 2: VISAPP, (VISIGRAPP 2009) ISBN 978-989-8111-69-2, pages 333-339. DOI: 10.5220/0001793103330339


in Bibtex Style

@conference{visapp09,
author={Oskar Linde and Lars Bretzner},
title={LOCAL HISTOGRAM BASED DESCRIPTORS FOR RECOGNITION},
booktitle={Proceedings of the Fourth International Conference on Computer Vision Theory and Applications - Volume 2: VISAPP, (VISIGRAPP 2009)},
year={2009},
pages={333-339},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0001793103330339},
isbn={978-989-8111-69-2},
}


in EndNote Style

TY - CONF
JO - Proceedings of the Fourth International Conference on Computer Vision Theory and Applications - Volume 2: VISAPP, (VISIGRAPP 2009)
TI - LOCAL HISTOGRAM BASED DESCRIPTORS FOR RECOGNITION
SN - 978-989-8111-69-2
AU - Linde O.
AU - Bretzner L.
PY - 2009
SP - 333
EP - 339
DO - 10.5220/0001793103330339