Figure 4: Segmentation results of CT image using
watershed algorithm.
ACKNOWLEDGEMENTS
This work was partially done in the scope of the
project “BIOPELVIC-Study of Female Pelvic Floor
Disorders”, with reference PTDC/SAU-
BEB/71459/2006, financially supported by
Fundação para a Ciência e a Tecnologia of Portugal.
REFERENCES
Adams, R., Bischof L., 1994. Seeded Region Growing.
IEEE Trans. on Pattern Anal Mach. Intelligence,
16:641-47.
Akselrod-Ballin, A, Galun, M, et al, 2006. Atlas Guided
Identification of Brain Structures by Combining 3D
Segmentation and SVM Classification. Int. Conf Med
Image Comput Comput Assist Interv., 209-16.
Alirezaie, J., Jernigan, M. E., Nahmias, C., 1997. Neural
Network-Based Segmentation of Magnetic Resonance
Images of the Brain, IEEE Trans. on Nuclear Science,
44:194-8.
Bezdek, J. C., Hall, L. O., Clarke, L. P., 1993. Review of
MR Image Segmentation Techniques Using Pattern
Recognition, Med. Phys., 20:1033-48.
Canny, J., 1986. A Computational Approach to Edge
Detection. IEEE Trans. Pattern Analysis and Machine
Intelligence, 8:679-714.
Caselles, V., Kimmel, R., Sapiro, G., 1997. Geodesic
Active Contours. Int. J. of Comp. Vision, 22:61-79.
Chan, T., Vese, L. A., 1999. An Active Contour Without
Edge. Int. Conf. Scale-Space Theories in Computer
Vision, 141-151.
Cheng, K. S., Lin, J. S., Mao, C. W., 1996. The
Application of Competitive Hopfield Neural Network
to Medical Image Segmentation. IEEE Trans. on Med.
Img., 15:560-7.
Cohen, L. D., 1991. On Active Contour Models and
Balloons. CVGIP: Image Understanding, 53:211-8.
Cootes, T. F., Edwards, G. J., Taylor, C. J., 2001. Active
Appearance Models. IEEE Trans. Pattern Analysis
and Machine Intelligence, 23: 681-85.
Davis, L. S., 1975. A Survey of Edge Detection
Techniques. Comp. Graphics and Image Processing,
4:248-70.
Flitti, F., Collet, C., Joannic-Chardin, A., 2005.
Unsupervised Multiband Image Segmentation Using
Hidden Markov Quadtree and Copulas. IEEE Int. Conf.
on Image Processing, 2:634-37.
Gindi, G., Rangarajan, A., Zubal, G., 1993. Atlas-Guided
Segmentation of Brain Images via Optimizing Neural
Networks. Proc. SPIE Biomedical Image Processing
IV, 1905-58.
Kass, M., Witkin, A., Terzopoulos, D., 1987. Snakes:
Active contour models. Int. J. of Comp. Vision, 1:321-
31.
Malladi, R., Sethian, J. A., Vemuri, B., 1993. A Topology
Independent Shape Modeling Scheme. SPIE Conf. on
Geometric Methods in Computer Vision II, 2031:246-
58.
McInerney, T., Terzopoulos, D., 1995. A Dynamic Finite
Element Surface Model for Segmentation and
Tracking in Multidimensional Medical Images with
Application to Cardiac 4D Image Analysis.
Computerized Medical Imaging and Graphics, 19:69-
83.
Mohamed, N. A., Ahmed, M. N., Farag A., 1998.
Modified Fuzzy C-mean in Medical Image
Segmentation. Proceedings of the 20th Annual
International Conference of the IEEE
, 3:1377-80.
Ng, H. P., Ong, S. H., et al, 2006. Medical Image
Segmentation Using K-Means Clustering and
Improved Watershed Algorithm. IEEE Southeast
Symposium on Image Analysis and Interpretation, 61-
5.
Osher, S., Sethian, J., 1988. Fronts Propagating with
curvature-dependent speed: algorithms based on
Hamilton-Jacobi formulations. J. Comp. Phys., 79: 12-
49.
Paragios, N., 2002. A Variational Approach for the
Segmentation of the Left Ventricle in Cardiac Image
Analysis, International Journal of Computer Vision,
50:345-62.
Pohle, R., Toennies, K. D., 2001. Segmentation of
Medical Images Using Adaptive Region Growing,
SPIE, 1337-46.
Wang, S., Zhu, W. Y., Liang, Z. P., 2001. Shape
Deformation: SVM Regression and Application to
Medical Image Segmentation, Eighth International
Conference on Computer Vision, 2:209-16.
Wong, K. P., Feng, D., et al, 2002. Segmentation of
Dynamic PET Images Using Cluster Analysis. IEEE
Trans. on Nuclear Science, 40:200-07.
Xu, C. Y., Prince, J. L., 1998. Snakes, Shapes, and
Gradient Vector Flow. IEEE Trans. on Image
Processing, 7:359-69.
Zaidi, H., 2005. Quantitative Analysis in Nuclear
Medicine Imaging, Springer.
IMAGAPP 2009 - International Conference on Imaging Theory and Applications
140