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Abstract: Eigenvectors from Standard Object Colour Spectra (SOCS) set were used with several other spectra sets to 
find the optimal sampling intervals for optimal number of eigenvectors. The sampling intervals were 
calculated for each eigenvector separately. The analysis was applied not only for different sets of reflectance 
spectra, but also for spectra sets under different real light sources and standard illuminations. It is shown 
that 20 nm sampling interval for eigenvectors from SOCS set can be used for reflectance data and data 
under such light sources which spectrum is smooth. However, data under peaky real fluorescent light 
sources and standard F-illuminant require accurate 5 nm or even narrower sampling interval for the first few 
eigenvectors, but can be wider with some of the others. These eigenvectors from SOCS set are shown to be 
applicable for the other data sets. The results give guidelines for the required accuracy of eigenvectors under 
different light sources that can be considered e.g. in eigenvector-based filter design. 

1 INTRODUCTION 

Color is usually represented with three components, 
such as with RGB color coordinate system. In many 
cases, this is not enough. Trichromatic 
representations of color are depended on the used 
device and illumination, and those are affected by 
metameric issues (Morovic, 2002). These problems 
can be avoided with accurate spectral representation 
of color. The use of spectral color is becoming more 
and more popular. Spectra are needed for example in 
telemedicine (Nishibori, 2002), e-commerce, digital 
art museums (Martinez et al., 2002), art restoration, 
quality control (Hyvärinen et al., 1999) etc. 
However, accurate spectral color measurement 
devices are expensive and measurement may be 
difficult in a noisy environment. Accurate non-
compressed spectral data require also a lot of 
memory, which will cause problems in using, storing 
and transferring tasks (Hauta-Kasari et al., 2006). 

Spectral dimensionality has been widely studied. 
This consists of finding the required sampling 
interval of color spectra (Buchsbaum & Gottschalk, 
1984; Maloney, 1986; Bonnardel & Maloney, 2000; 
Lehtonen et al., 2006), and transforming the spectra 
to another lower dimensional space (Parkkinen et al., 
1989; Hyvärinen et al., 2001; Schettini, 1994; Early 
& Nadal, 2004). One widely used method is 
Principal Component Analysis (PCA) (Parkkinen et 
al., 1989), where the data dimensionality is reduced 
with the eigenvectors of the data. Several 
applications based on PCA, such as non-negative 
filters for imaging have been developed (Piché, 
2002). By Hauta-Kasari et al., (1998), the 
eigenvector-based non-negative filters make it 
possible to produce the inner-product set in 
hardware level. From the measured data, accurate 
spectral information can be computed. 

However, to the authors’ knowledge, optimal 
number of eigenvectors under different illuminants 
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combined with the required spectral accuracy of the 
eigenvectors has not been studied. Here we will 
create such sets of eigenvectors under different light 
sources that can be used for several other color data 
sets. This includes also a study of required spectral 
accuracy of eigenvectors. The results can be used 
e.g. in filter design to create optimal number of non-
negative color filters for different illuminants, which 
can be used generally for accurate color 
measurements (Piché, 2002; Hauta-Kasari et al., 
1998). 

2 THEORY 

A widely used method for reducing the dimensions 
of color spectra is Principal Component Analysis 
(PCA) (Parkkinen et al., 1989). Let C be a 
correlation matrix 
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Here Si is ith spectrum of a spectra set S and N is the 
number of spectra. The h first eigenvectors of the 
spectra set ordered by the largest eigenvalues can be 
calculated. The inner-product set P is then formed 
with equation  

( ) ,,...,, 21 SP T
hτττ=  (2) 

where ( )hτττ ,...,, 21  and T denotes the eigenvectors 
and matrix transpose, respectively. The data can be 
reconstructed back to spectra with the linear 
combination of ( )hτττ ,...,, 21  and inner-product set 
P. 

If spectra data set is well defined, one might use 
the eigenvectors calculated from it to reduce the 
dimensionality of any other spectra set. In this study, 
we try to use the eigenvectors of a data set with 
different other data sets and optimize the sampling 
intervals of the eigenvectors. Each eigenvector was 
sampled to several sampling intervals 
straightforward and then interpolated back with 
Lagrange interpolation used by Fairman (1985) 
before reconstruction of spectra. Such number of 
eigenvectors and sampling intervals were chosen 
that the reconstructed spectra have good quality. For 
this, several quality and error measurements were 
done defined in chapter 4. This analysis was studied 
with the reflectance spectra and also with spectra 
under different real light sources and standard 
illuminants. However, since the eigenvectors are 
sampled and interpolated, those are not orthogonal 
after conversion, and calculating with PCA is not 

straightforward. A pseudoinverse matrix is required 
to fix the orthogonality, and the reproduction can be 
calculated with 
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where rτ  is the sampled and interpolated 
eigenvectors ),,...,,( 21

r
h

rr τττ  and Sr is the 
reconstructed spectra set. In this study, a term 
eigenvector index is used to denote the eigenvector 
index number 1...h, where the eigenvectors are 
ordered in descending order by the eigenvalues. 

3 DATA SETS 

Ten different spectra sets (University of Joensuu, 
2008; Japanese Standards Association, 1998; 
Kohonen et al., 2006; Funt & Lewis, 2000; 
Farnsworth, 1957; Jaaskelainen et al., 1994; 
Pantone, 2008) were used, listed in Table 1. The 
spectra originally measured with wider sampling 
interval than 1 nm were interpolated with Lagrange 
method shown by Fairman (1985) to 1 nm data and 
treated as original data. According to Lehtonen et al. 
(2006) and Sándor et al. (2005) this can be done, 
since interpolated reflectance spectra are very near 
to spectra measured with 1 nm. Spectral values 
outside 400...700 nm range were eliminated. 

Table 1: Data sets. 

Data set Nr. 
of 

spectra 

Original  
wavelength 
area [nm] 

Original
sampling

[nm] 
Dupont1 120 400...700 4 
FM1002 85 400...700 5 
Wood3 1,056 390...850 5 
Lumber 272 380...2700 1 
Munsell Glossy4 1,600 380...780 1 
Munsell Matte4 1,269 280...800 1 
Object Spectral Reflect-
ance Database (OSRD)1 

170 400...700 4 

Pantone5 922 380...780 1 
Printed Colors 2,240 380...780 1 
Standard Object Colour 
Spectra (SOCS)6 

49,392 400...700 5, 10 

1Funt & Lewis, 2000. 2Farnsworth, 1957. 3Jaaskelainen et al., 
1994. 4University of Joensuu, 2008. 5Pantone, 2008. 6Japanese 
Standards Association, 1998. 

At first, eigenvectors from different data sets 
were tried to be used separately for other data sets. 
According to tests, suitable eigenvectors can be 
calculated from both Munsell sets (University of 
Joensuu, 2008), from Pantone set (Pantone, 2008) 
and from Standard Object Colour Spectra (SOCS) 
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set (Japanese Standards Association, 1998). The 
spectra of the Munsell sets and Pantone set vary a 
lot. For example Munsell set describes the colors of 
CIE L*a*b* coordination well, and therefore the 
eigenvectors are formed for the whole coordination. 
However, both Munsell sets and also Pantone set 
had problems with Wood data set (Jaaskelainen et 
al., 1994), requiring near 20 eigenvectors for good 
result, but this problem was not an issue in any set 
with eigenvectors of SOCS set. SOCS data set 
includes 49,392 spectra from photographic 
materials, printed colors, paints, textiles, human 
skin, flowers and leaves. This is a wide collection of 
color spectra and therefore, the eigenvectors of this 
set can represent several types of data well. 

The sampled and interpolated eigenvectors from 
SOCS data set were calculated. These eigenvectors 
were used as a base for calculating the inner-
products of other spectra sets and for reconstruction. 
The required number of eigenvectors and the needed 
sampling interval of eigenvectors were found with 
calculating the quality of reconstructed spectra. The 
number of eigenvectors was chosen as the smallest 
possible. This procedure was also experimented with 
the reflectance data, data under four different real 
light sources and five standard illuminants A, D65, 
F2, F8 and F11. Spectra of the real light sources are 
shown in Figure 1. In these cases, also the SOCS 
data was converted under the light source or 
illuminant before PCA calculations. 

 
Figure 1: Spectra of the real light sources. 

4 QUALITY AND ERROR 
MEASURES 

Two quality measures and one error measure were 
used to define the quality of reconstructed spectra. 
The error measure is ΔE, which measures the visual  
color difference in CIE L*a*b* color coordination as  

( ) ,***
2/1222 baLE Δ+Δ+Δ=Δ  (4) 

where ΔL*, Δa* and Δb* are the component 
differences between the original and reconstructed 
color values in CIE L*a*b* color space. According 
to Ohta and Robertson (2005), ΔE = ~1.0 is usually 
discriminable. Parkkinen et al. (1989) use color limit 
of average ΔE < 0.5. Equal-energy spectrum was 
used as illuminant with calculating the tristimulus 
values. 

Goodness-of-Fit Coefficient (GFC) (Hernández-
Andrés et al., 2001) is a correlation based quality 
measure between two spectra, measuring the 
similarity of two spectra. It is defined as 
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where n is number of channels in spectrum. Terms 
o
ks  and r

ks   are the wavelength channel values of 
original and reconstructed spectra, respectively. 
According to Hernándes-Andrés et al. (2001), good 
limit for this quality measure is 0.999 and accurate 
limit 0.995. 

Peak Signal-to-Noise Ratio PSNR is widely used 
quality measure in image compression, defined as 
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where εMSE is Mean Square Error and ŝ  is the 
theoretical maximum of a channel value in 
spectrum.  

Based on Parkkinen et al. (1989), Ohta & 
Robertson (2005) and Hernandéz-Andrés et al. 
(2001), the quality and error limits were chosen as 
average ΔE < 0.5, average GFC > 0.999 and average 
PSNR > 40 dB. To obtain accurate results, all of 
these limits must be satisfied in spectra 
reconstruction. Also, when selecting a suitable 
number of eigenvectors and sampling interval, it is 
required that all narrower sampling intervals and 
higher number of PCA components must satisfy 
with the limits. 

The quality and error measures and the selected 
limits were compared with each other with the data 
sets under Artificial Daylight source, illuminant F11 
and illuminant D65. With each light source, the GFC 
limit 0.999 and PSNR limit 40 dB correspond well 
with each other, and both accept and reject same 
sampling intervals. Similar result is found with ΔE 
compared to GFC or PSNR for the data under 
Artificial Daylight source. However, the ΔE limit is 
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more unforgiving with data under F11 illuminant, 
accepting 1...4 nm sampling intervals, whereas GFC 
and PSNR accept only 1...2 nm sampling intervals. 
Also, ΔE error does not always correspond with the 
sampling interval. With some cases the average 
visual error is smaller but the average spectral error 
is higher with wide sampling interval than with 
narrow sampling interval. Some small variations can 
also be found with the quality measures, e.g. with 
F11 illuminant GFC and PSNR values are better 
with 5 nm sampling interval than 4 nm interval. For 
these reasons, also all more accurate sampling 
intervals than the selected one must satisfy with the 
limits. 

5 PARAMETER SELECTIONS 

The results of the required number of PCA 
components and sampling intervals of different 
eigenvectors with different reflectance data sets and 
data sets under Artificial Daylight source are shown 
in Table 2. The eigenvectors of SOCS data is used. 
For all reflectance data sets, 20 nm interval is 
enough for the eigenvectors. The required number of 
eigenvectors varies between 6...11, depending on the 
variety of colors in data set and data set difference 
from SOCS set. However, majority of the data sets 
can be represented with eight eigenvectors. For data 
under Artificial Daylight source, 4...6 nm interval is 
needed for the first eigenvector, but can be wider 
with most of the data sets with higher index 
eigenvectors. Also, 4...8 eigenvectors are required 
depending on the data set. 

The overall results of the reflectance data sets 
and data sets under different light sources are shown 
in Table 3. Here, the total averages of different 
quality and error measures were used, weighted 
equally between different sets. With reflectance data 
and data under smooth light sources the required 
sampling interval for SOCS eigenvectors is 20 nm. 
In average for all data sets, ten PCA components are 
required with the reflectance data and data under 
D65 illuminant. Eight PCA components are enough 
for data under illuminant A and Tungsten light 
source. The required sampling interval for the first 
few eigenvectors of SOCS are 4...5 nm with data 
sets under real fluorescent light sources, but interval 
can be wider for higher index eigenvectors. 
Depending on the light source, 5...8 PCA 
components are required. For data under F-
illuminants, 1...3 nm interval is needed, but with F2 
and F11, the interval can be wider for higher index 
eigenvectors. In average for all data sets, 5...10 PCA 
components are required depending on the light 
source. It was also found that 0...2 less eigenvectors 

from SOCS set are enough for the use with SOCS 
spectra set alone, compared to use with other data 
sets. Some average and bad examples of spectra 
reconstruction are shown in Figure 2 when the 
eigenvectors of SOCS data with sampling intervals 
shown in Table 3 are used. 

Table 2: Required sampling intervals of eigenvectors of 
SOCS data when used with different data sets. 

Reflectance  Eigenvector index 
data set 1 2 3 4 5 6 7 8 9 10 11
Dupont 20 20 20 20 20 20 20 20 20 - - 
FM100 20 20 20 20 20 20 20 20 - - - 
Forest 20 20 20 20 20 20 20 20 20 20 20
Lumber 20 20 20 20 20 20 - - - - - 
Munsell G. 20 20 20 20 20 20 20 20 - - - 
Munsell M. 20 20 20 20 20 20 20 20 - - - 
OSRD 20 20 20 20 20 20 20 20 20 20 - 
Pantone 20 20 20 20 20 20 20 20 - - - 
Printed Col. 20 20 20 20 20 20 - - - - - 
SOCS 20 20 20 20 20 20 20 20 - - - 
Data under Eigenvector index  
Artif. Dayl. 1 2 3 4 5 6 7 8    
Dupont 5 4 5 11 9 11 20 10    
FM100 4 7 6 11 15 - - -    
Forest 5 9 9 20 13 10 8 -    
Lumber 6 9 8 6 - - - -    
Munsell G. 5 7 6 5 15 - - -    
Munsell M. 5 7 5 11 15 - - -    
OSRD 5 5 5 15 6 13 10 20    
Pantone 4 7 6 9 11 14 - -    
Printed Col. 5 5 9 13 14 - - -    
SOCS 5 7 9 10 11 - - -    

Table 3: Required average sampling intervals of 
eigenvectors of SOCS data when used with all data sets 
and under different light sources. 

All data sets Eigenvector index 
Light source 1 2 3 4 5 6 7 8 9 10 
Reflectance 20 20 20 20 20 20 20 20 20 20 
Artif. Daylight 5 7 5 5 10 - - - - - 
Northlight 5 12 12 13 8 6 8 20 - - 
Deluxe Natural 4 4 5 9 15 - - - - - 
Tungsten lamp 20 20 20 20 20 20 20 20 - - 
A 20 20 20 20 20 20 20 20 - - 
D65 20 20 20 20 20 20 20 20 20 20 
F2 1 3 5 9 13 6 20 - - - 
F8 2 1 3 3 1 2 3 1 3 - 
F11 2 6 3 7 6 3 7 7 - - 

The spectra from each group and each light 
source were divided in four groups based on the 
resulted average quality and error calculations. The 
average relative numbers of spectra in different error 
groups for different light sources are shown in Table 
4, when quality and error measures are weighted 
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equally between the test sets. SOCS data was not 
included in the test sets, it was only used to form the 
eigenvectors. In general, over 90% of the spectra 
sets are located in highest quality groups a) and b). 
Only exceptions are found with Artificial Daylight 
source and F11 illuminant, where the relative 
number is 80%. Only about 1% of the spectra give 
high error, see group d). A small exception is found 
with F11 illuminant, where the number of bad 
spectra is 3.8%. However, most of these spectra are 
selected as bad only because PSNR values very near 
30 dB is achieved, but not quite. If this quality limit 
was changed to PSNR = 28 dB, the relative number 
of bad spectra would be 1.6%. 

 
Figure 2: Some average and bad examples of spectrum 
reconstruction. Original spectrum is shown as solid line 
and reconstructed one as dashed line. 

Table 4: Relative number of spectra distributed with 
quality and error measures when eigenvectors of SOCS 
data with sampling interval listed in Table 3 is used. 

All data sets, 
not SOCS 

    

Light source a) b) c) d) 
Reflectance 83.7% 14.8% 1.5% 0.0% 
Artificial Daylight 40.1% 42.8% 15.4% 1.7% 
Northlight 57.4% 34.9% 6.8% 0.9% 
Deluxe Natural 56.5% 35.7% 6.7% 1.2% 
Tungsten lamp 68.9% 20.9% 9.0% 1.2% 
A 74.3% 21.5% 3.8% 0.4% 
D65 64.4% 33.8% 1.8% 0.0% 
F2 56.4% 34.1% 8.3% 1.2% 
F8 62.8% 26.4% 9.5% 1.3% 
F11 30.5% 47.7% 18.0% 3.8% 
Average 59.5% 31.3% 8.1% 1.2% 
a) (ΔE < 0.5) AND (GFC > 0.999) AND (PSNR > 40dB) 
b) (0.5 ≤ ΔE < 1.0) AND (0.995 < GFC ≤ 0.999) AND  
    (34dB < PSNR ≤ 40dB) 
c) (1.0 ≤ ΔE < 3.0) OR (0.990 < GFC ≤ 0.995) OR  
    (30dB < PSNR ≤ 34dB) 
d) (ΔE ≥ 3.0) OR (GFC ≤ 0.990) OR (PSNR ≤ 30dB) 

6 CONCLUSIONS 

For reflectance data and data under those light 
sources, which spectrum is smooth, the eigenvectors 
are also smooth, and wide 20 nm sampling interval 
is enough. For data under real fluorescent light 
sources, the peaky dominating shape caused by the 
light source is located in the eigenvectors, and the 
required sampling interval is accurate in lower 
indexes, near 5 nm, but can be a bit wider with some 
higher indexes, near 10 nm. F-illuminants require 
more accurate sampling interval compared to real 
fluorescent light sources, between 1...7 nm 
depending on the eigenvector index. Since the 
higher index inner-products do not contain much 
overall information, the corresponding eigenvectors 
can have some more errors than lower index 
eigenvectors. Few examples of errorous 
eigenvectors are shown in Figure 3. 

 
Figure 3: Some bad examples of eigenvectors with wide 
sampling. Original eigenvector is shown as solid line and 
reconstructed one as dashed line. 

The data set under a light source, which 
spectrum is peaky, require also few less PCA 
components compared to reflectance data or data 
under a smooth light source. The aggressive shape of 
peaky light source limits the spectra more similar to 
each other and therefore less PCA components are 
required. 

The results show also that eigenvectors defined 
from large variety of data, such as from SOCS data 
set, work very well generally with other data sets. 
The required sampling interval of eigenvectors 
depends on the eigenvector index and the light 
source. All data sets under a light source give similar 
sampling intervals, but the required number of 
eigenvectors is different with different data sets and 
light sources. However, a general required number 
of eigenvectors was found for different light sources 
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separately, which can be used to generate low errors. 
The results can be useful in applications based on 
eigenvectors, such as in designing optimal non-
negative filters for different light sources. 
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