SIMULATING DYNAMICAL SYSTEMS FOR EARLY VISION

Babette Dellen, Florentin Wörgötter

2009

Abstract

We propose a novel algorithm for stereo matching using a dynamical systems approach. The stereo correspondence problem is first formulated as an energy minimization problem. From the energy function, we derive a system of differential equations describing the corresponding dynamical system of interacting elements, which we solve using numerical integration. Optimization is introduced by means of a damping term and a noise term, an idea similar to simulated annealing. The algorithm is tested on the Middlebury stereo benchmark.

References

  1. Alvarez, L. and Sánchez, J. (2000). 3-d geometry reconstruction using a color image stereo pair and partial differential equations. Cuadernos del Instituto Universitario de Ciencias y Tecnologas Ciberneticas, 6:1-26.
  2. Barnard, S. T. (1989). Stochastic stereo matching oer scale. International Journal of Computer Vision, 3(1):17- 32.
  3. Boykov, Y., Veksler, O., and Zabih, R. (2001). Fast approximate energy minimization via graph cuts. IEEE Trans. Pattern Analysis and Machine Intelligence, 23(11):1222-1239.
  4. Egnal, G. and Wildes, R. (2002). Detecting binocular half-occlusions: Empirical comparisons of five approaches. IEEE Trans. Pattern Analysis and Machine Intelligence, 24(8):1122-1133.
  5. Geman, S. and Geman, D. (1984). Stochastic relaxation, gibbs distribution, and the baysian restoration of images. IEEE Trans. Pattern Analysis and Machine Intelligence, 6(6):721-741.
  6. Maier, D., Rössle, A., Hesser, J., and Männer, R. (2003). Dense disparity maps respecting occlusions and object separation using partial differential equations. In Sun, C., Talbot, H., Ourselin, S., and Adriaanen, T., editors, Proc. VIIth Digital Image Computing: Techniques and applications, pages 613-622.
  7. Marroquin, J., Mitter, S., and Poggio, T. (1987). Probabilistic solution of ill-posed problems in computational vision. Journal of the American Statistical Association, 82(397):76-89.
  8. Roe, A. W., Parker, A. J., Born, R. T., and DeAngelis, G. C. (2007). Disparity channels in early vision. Journal of Neuroscience, 27(44):11820-31.
  9. Roy, S. (1999). Stereo without epipolar lines: A maximum flow formulation. International Journal of Computer Vision, 34(2/3):147-161.
  10. Scharstein, D. and Szeliski, R. (2002). A taxonomy and evaluation of dense two-frame stereo correspondence algorithms. International Journal of Computer Vision, 47:7-42.
Download


Paper Citation


in Harvard Style

Dellen B. and Wörgötter F. (2009). SIMULATING DYNAMICAL SYSTEMS FOR EARLY VISION . In Proceedings of the Fourth International Conference on Computer Vision Theory and Applications - Volume 2: VISAPP, (VISIGRAPP 2009) ISBN 978-989-8111-69-2, pages 525-528. DOI: 10.5220/0001800905250528


in Bibtex Style

@conference{visapp09,
author={Babette Dellen and Florentin Wörgötter},
title={SIMULATING DYNAMICAL SYSTEMS FOR EARLY VISION},
booktitle={Proceedings of the Fourth International Conference on Computer Vision Theory and Applications - Volume 2: VISAPP, (VISIGRAPP 2009)},
year={2009},
pages={525-528},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0001800905250528},
isbn={978-989-8111-69-2},
}


in EndNote Style

TY - CONF
JO - Proceedings of the Fourth International Conference on Computer Vision Theory and Applications - Volume 2: VISAPP, (VISIGRAPP 2009)
TI - SIMULATING DYNAMICAL SYSTEMS FOR EARLY VISION
SN - 978-989-8111-69-2
AU - Dellen B.
AU - Wörgötter F.
PY - 2009
SP - 525
EP - 528
DO - 10.5220/0001800905250528