Figure 7: Key-frames extracted by the IBM Marvel soft-
ware for the same video segment as in Figure 6.
more than one key-frame per shot which, for naviga-
tion purposes, can highlight interesting segments of a
soccer video.
As future works, we plan to use the MVR and
MRVR images for shot detection by exploring its tem-
poral feature, and improve the shot classification in
order to classify shots by camera view modes and not
only by playground appearance. Finally, it is also in-
teresting to perform, as a validation scheme, a user
test for video browsing and navigation by considering
the key-frame extraction proposed here.
ACKNOWLEDGEMENTS
The authors are grateful to the National Council for
Scientific and Technological Development (CNPq),
CAPES and FAPESP for the financial support.
REFERENCES
Arman, F., Depommier, R., Hsu, A., and Chiu, M.-Y.
(1994). Content-based browsing of video sequences.
In MULTIMEDIA ’94: Proceedings of the second
ACM international conference on Multimedia, pages
97–103, New York, NY, USA. ACM Press.
Bezerra, F. N. and Leite, N. J. (2003). Video transition
detection using string matching: preliminary results.
In SIBGRAPI XVI Brazilian Symposium on Computer
Graphics and Image Procesing, pages 339–346.
Brunelli, R., Mich, O., and Modena, C. M. (1999). A sur-
vey on the automatic indexing of video data. Journal
of Visual Communication and Image Representation,
10(2):78–112+.
Chung, M. G., Lee, J., Kim, H., Song, S. M.-H., and Kim,
W. M. (1999). Automatic video segmentation based
on spatio-temporal features. Korea Telecom Journal,
4(1):1–13.
Ciocca, G. and Schettini, R. (2005). Dynamic key-frame
extraction for video summarization. In Santini, S.,
Schettini, R., and Gevers, T., editors, Internet Imag-
ing VI, volume 5670, pages 137–142. SPIE.
Doulamis, A. D., Doulamis, N. D., and Kollias, S. D.
(2000). A fuzzy video representation for video sum-
marization and content-based retrieval. Signal Pro-
cessing, 80(6):1049–1067.
Dufaux, F. (2000). Key frame selection to represent a
video. In International Conference on Image Process-
ing, volume 2, pages 275–278.
Guimar˜aes, S. J. F., Leite, N. J., Couprie, M., and de Albu-
querque Arajo, A. (2003). Video segmentation based
on 2D image analysis. Pattern Recognition Letters,
24(7):947–957.
Kim, H., Lee, J., Yang, J.-H., Sull, S., Kim, W. M.,
and Song, S. M.-H. (2001). Visual rhythm and
shot verification. Multimedia Tools and Applications,
15(3):227–245.
Komlodi, A. and Marchionini, G. (1998). Key frame pre-
view techniques for video browsing. In DL ’98: Pro-
ceedings of the third ACM conference on Digital li-
braries, pages 118–125, New York, NY, USA. ACM
Press.
Koprinska, I. and Carrato, S. (2001). Temporal video seg-
mentation. Signal Processing: Image Communica-
tion, 16(5):477–500.
Liu, F., Dong, D., Miao, X., and Xue, X. (2003). A fast
video clip retrieval algorithm based on va-file. In
Yeung, M. M., Lienhart, R. W., and Li, C.-S., edi-
tors, Storage and Retrieval Methods and Applications
for Multimedia 2004, volume 5307, pages 167–176.
SPIE.
Ngo, C. W., Pong, T. C., and Chin, R. T. (1998). Survey of
video parsing and image indexing techniques in com-
pressed domain. Symposium on Image, Speech, Signal
Processing, and Robotics (Workshop on Computer Vi-
sion), 1:231–236.
Pardo, A. (2006). Pixel-wise histograms for visual segment
description and applications. In CIARP2006, Lecture
Notes in Computer Science, volume 4225/2006, pages
873–882. Springer.
Patel, N. V. and Sethi, I. K. (1996). Compressed video pro-
cessing for cut detection. Visual Image Signal Pro-
cessing, 143(5):315–323.
Sim˜oes, N. C. (2004). Detec˜ao de algumas transi˜oes abrup-
tas em segncias de imagens (in portuguese). Master’s
thesis, Institute of Computing - UNICAMP.
Smith, J. R., Natsev, A. P., Tesic, J., Lexing Xie, R. Y.,
Letz, F., Penz, C., Seidl, J., and Yang, J. (2007). IBM
multimedia analysis and retrieval system - Marvel Lite
3.2a. http://www.alphaworks.ibm.com/tech/imars.
VISAPP 2009 - International Conference on Computer Vision Theory and Applications
222