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Abstract: During the two last decades, many contributions have been proposed on 3D reconstruction from image 
sequences. Nevertheless few practical applications exist, especially using vision. We are concerned by the 
analysis of image sequences acquired during crash tests. In such tests, it is required to extract 3D 
measurements about motions of objects, generally identified by specific markings.  With numerical 
cameras, it is quite simple to acquire video sequences, but it is very difficult to obtain from operators in 
charge of these acquisitions, the camera parameters and their relative positions when using a multicamera 
system. In this paper, we are interested on the simplest situation: two cameras observing the motion of an 
object of interest: the challenge consists in reconstructing the 3D model of this object, estimating in the 
same time, the intrinsic and extrinsic parameters of these cameras. So this paper copes with 3D Euclidean 
reconstruction with uncalibrated cameras: we recall some theoretical results in order to evaluate what are the 
possible estimations when using only two images acquired by two distinct perspective cameras. Typically it 
will be the two first images of our sequences. It is presented several contributions of the state of the art on 
these topics, and then results obtained from synthetic data, so that we could state on advantages and 
drawbacks of several parameter estimation strategies, based on the Sparse Bundle Adjustment and on the 
Levenberg-Marquardt optimization function. 

1 INTRODUCTION 

This paper proposes some simple comparative 
results concerning the precision of the absolute 3D 
Euclidean reconstruction we can expected from 2 
different pinholes cameras and from matched points 
between views. The cameras are supposed to have 
very distinct relative orientations, so that it cannot be 
considered as a stereovision head; cameras 
parameters are unknown, except focal lengths that 
are approximately known from the constructor’s 
data sheet. We focus on the projective reconstruction 
of 3D points from matched pixels on two views and 
on the quality of the Euclidean structure estimated 
without prior geometric information, but imposing 
constraints/priors on the cameras parameters space. 
Imposing priors on the parameters may give better 
theoretical precision rather than fixing parameters. 
Nevertheless one must take care about 
parameterization imposed by the self-calibration 
constraints. We will particularly insist on this point. 

This work is motivated by an application about the 
analysis of video sequences acquired by two or more 
cameras, typically on a crash test experiments. Two 
images are presented on Figure 1: they are acquired 
by two uncalibrated cameras with very different 
viewpoints. The challenge consists in extracting 3D 
information from these images recovering in the 
same estimation process, the intrinsic parameters of 
the two cameras.  

2 CAMERA MODEL 

We are looking for the best Euclidean 3D 
reconstruction we can obtain from m sets of n 
corresponding images points xij coming from n 3D 
point Xi, projected onto the image planes by m 
distinct pinhole cameras Pj. To reach this goal, we 
want to estimate a parameter vector p that contain 
the camera parameters (Pj projection matrix for the 
camera j) and the 3D points 
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p = (Pj, Xi) (1) 
Without considering optical distortions, we have a 
total of (11m+3n) parameters. The parameter vector 
p gives a predictive camera model  

uij : R11 x R3→R2 (2) 

The model is for the 3D point i seen by the camera j: 

ij ij ij j ix  = u (p) = P X     i=1...n,    j=1...mλ  (3) 

The model will impose implicit constraints, 

c(xij, uij) = 0 (4) 
between underlying feature xij from noisy measurements 
of the feature x’ij, and have to be consistent with the 
feature. 

2.0.1 Feature Error Model 

Due to the very distinct viewpoints of the cameras, 
the feature points are selected manually and suppose 
free from outliers. The observation noise d(xij) 
induced by this manual selection is assumed to have 
Gaussian independent and identically distributed 
terms, with variance s2. 

x’ij = xij + d(xij) (5) 

2.0.2 Cost Function 

We have chosen the Maximum Likelihood Estimator 
(MLE) as decision criterion to estimate the 
parameters that best fit to the feature error model. 
MLE gives the global minimum of the inverted log 
likelihood, taken as a function of the parameters p, 

p
 p = argmin J(p)   (6) 

With 

( )
2n,m

2 ij ij
i,j=1

1 J(p) = x -u p2σ ∑  (7) 

It is well known that this cost function does 
generally not have a unique minimum and is very 
dependent on the initial estimate of the parameters 
p0. These problems occur if it exists a coordinate 
transformation g of the parameter space P such that  

J(p) = J(g.p) (8) 

The set of all such transformation form the group G, 
called the group of gauge transformation. The set of 
all parameters such that p = g.p0 (p is geometrically 
equivalent to p0) form what is called the leaf Pp0 
associated with p0, which is a sub manifold of P. So 
some constraints have to be imposed on the 

parameters set in order to have a unique solution, 
which minimizes eq.(7), for each connected 
component of the leaf. However we recall that this 
will not be a global minimum of J. Moreover, these 
constraints need to be linear. 

2.0.3 Numerical Optimization 

The Non Linear Least Square problem defined by 
MLE eq.(7) will be solved by numerical 
optimization via a Damped Levenberg-Marquardt 
algorithm allowing simple bounds constraints on the 
variables (Gill et al., 1981) , also called a Bundle 
Adjustment procedure (Triggs et al., 2000) as the 3D 
point coordinates are part of the parameters vector p. 

2.1 Counting Argument 

If we consider that the m cameras are uncalibrated, 
the projection matrixes Pj contain 11m independent 
parameters, removing the projective scale factor. 
These parameters are only defined up to 15 degrees 
of freedom (noted dof) coordinates transformation T 
of the projective space P3, defining a camera 
parameter space with (11m-15) essential degrees of 
freedom (noted edof). 

That simply means that to have a unique solution on 
the leaf Pp0, the parameters must be constrained by 
15 algebraically independent gauge equations ci. 
These equations define a sub manifold C in P of co 
dimension 15 and ensure that there is a unique gauge 
transformation g that maps a parameter p of Pp0 to 
another parameter pc of Pp0 which respects the 
constraints.  
Now, let us consider the same problem with 
calibrated cameras: every projection matrix has 6 
dof, and are defined only up to a 7 dof similarity 
transformation of the Euclidean coordinate space, 
leaving (6m-7) edof for the parameter space. So 
intuitively, if we want to move from the uncalibrated 
projective space to the calibrated Euclidean space or 
goes in the inverse way, we have (5m-8) edof left 
and 8 constraints more to impose. 

2.2 Parameterization 

The classical way of representing a perspective 
camera is to define the following model for a camera 
projection matrix  

Pj = Kj  Ei (10) 

 

1
ij ij j ix  =  (P T)(T X )   i=1...n,    j=1...mλ −  (9) 
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Figure 1: Example of a two-cameras application. 

where Ki is the 3X3 upper triangular intrinsic matrix (5 
dof) that links 3D point coordinates in the camera 
reference frame to images 2D pixel coordinates, 

iu i0

iv i0

f s u
K = 0 f v

0 0 1

i

i

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦  

(11) 

Ei is the extrinsic parameters matrix (6m dof), that 
links the world coordinates to the cameras ones. 

Ei = [ Ri | ti ] (12) 
However, this model will impose non linear constraints on 
the feature instead of linear ones. 

2.2.1 Calibrated Case 

In the calibrated case, intrinsic parameters are 
known, leaving a (6m) dof parameterization. So, 
beginning from an initial parameter vector p0, 7 
independent constraints have to be imposed on the 
camera parameters space to have a unique solution 
among C. Indeed without gauge, Euclidean 
reconstruction is obtained up to a similarity. A 
solution is to fix arbitrarily the world coordinate 
frame to the first camera frame by imposing that  

E1 = [I3X3|0] (13) 

and to fix the unknown scale of the Euclidean 
reconstruction (Kanatani and Morris, 2000, 
Grossman and Victor, 1998) by imposing  

|| t2….tm || = 1 (14) 

This is the standard Euclidean gauge. We then 
parameterize minimally the cameras relative 
orientations by 6*m-7 free parameters, independent 
from each other’s: 3(m-1) Euler angles via the 
Rodrigues formula and (3m-4) parameters for the 
normalized multi-camera translation. The 
constrained parameter space C has (6m-7) edof. 

2.2.2 From Calibrated Euclidean Space to 
Uncalibrated Projective Space 

Now, if we want to extent the calibrated Euclidean 
parameterization defined above to the particular case 
of uncalibrated cameras, the intrinsic parameters of 
m cameras must be added into the system 
parameterization. Beginning with totally unknown 
intrinsic parameters, the projective cameras are 
parameterized in a calibrated Euclidean way. The 
counting argument allows (5m-8) edof to 
parameterize the intrinsic parameters considering the 
simple difference between the edof in the Projective 
and Euclidean cases; equivalently it  makes 
mandatory to have 8 constraints on the (5m) dof of 
free intrinsic parameters. If we denote f the fixed 
intrinsic parameters and k the known ones among 
the m views, we can derive the well known counting 
process 

mk+(m-1)f = 8  (15) 

By the way, we recover the “self-calibration” 
constraints, which explain the fact that “the intrinsic 
parameters should be parameterized so that the self-
calibration constraints are satisfied” (Pollefeys at al., 
1998). 
The Euclidean uncalibrated parameterization impose 
implicit constraints on the projective parameter 
space via 

K [R | t] = P T (16) 

which is directly related with the constraint 
described by Triggs (Triggs, 1997) 

P Q PT = KKT (17) 

This constraint is applied on the absolute quadric 
and is expressed algebraically by the above counting 
argument. 

Q = T Diag(1,1,1,0) TT (18) 
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We can visualize these 8 constraints, fixing the 
unknown projective scale, by taking  

Pproj = [I3X3|0] (19) 

so that T and so Q, are parameterized by 8 
parameters (5 for intrinsic/absolute conic parameters 
and 3 for the plane at infinity). It gives a local 
parameterization of our gauge group G (Triggs, 
1998). 

T

K 0
T=

p 1
⎡ ⎤
⎢ ⎥
⎣ ⎦

 (20) 

We have now (11m-15) dof for our set of 
parameters; it is consistent both with the number of 
edof of the projective space and with the counting 
argument rule to well parameterize the intrinsic 
parameters following the number of views and the 
priors we have about them. It is also important to 
mention that the counting argument is only valid for 
non-critical configurations (configurations that do 
not permit to locate exactly the absolute quadric in 
the projective space). These configurations depend 
either on 3D points parameters (critical surface 
(Hartley and Zisserman, 2006)), or relative positions 
between cameras (critical motion sequences as 
described by Sturm (1997)), or both of them. Some 
specific approaches have to be developed in such 
cases. 

2.3 Dealing with Parameters Inter 
Correlations 

However, using this natural approach, we are not 
able to ensure that our essential parameters defined a 
set of independent parameters. The calibrated 
Euclidean parameterization provides an independent 
set of parameters, but in the uncalibrated case, the 
chosen parameterization gives intercorrelations, as 
the intrinsic parameters are highly correlated with 
the extrinsic ones (Shih et al., 1996). For instance, 
the principal point position is correlated with the 
camera orientation and the focal length with the 
translation along the optical axis. In this case, the 
camera parameters covariance matrix contains some 
abnormally elevated values. As a consequence, 
intrinsic gauge constraints imposed by eq.(10), if 
perturbed by noisy measurements, will greatly 
impact the Bundle Adjustment as the free parameters 
will move to compensate this initial error induced by 
the badly fixed/known ones.  
So we could think that a free intrinsic gauge 
approach, like the one proposed by Malis and Bartoli 
(Malis and Bartoli, 2001) will greatly improve the 

solution. Basically, the authors adopt an elegant 
method, equivalent to obtain a reduced model of the 
parameter set by the classical way. If we 
differentiate eq. (7) with respect to the intrinsic 
parameters, we set the result to zero, and we solve 
the resulting equation, then, intrinsic parameters are 
expressed in terms of the remaining parameters 
(image point, extrinsic and 3D points). Substituting 
it into eq. (3) we will obtain a function of the 
remaining parameters. However, as the intrinsic 
values are embedded in the free intrinsic gauge 
parameterization, the self-calibration constraints still 
have to be needed on remaining parameters leading 
to the same problem; they are imposed either by 
Lagrange multipliers or weighting methods.  
A method to have a better Euclidean reconstruction 
is to use some priors about the free parameters 
during the optimisation, imposing the free 
parameters to stay between some bounds. In the next 
section, we propose some comparative results using 
priors on focal lengths during a Bundle Adjustment 
process, in the typical standard Euclidean gauge 
(process noted EBA hereafter).  For the 2 view case 
with distinct cameras, EBA process is applied  with 
a weighting method, with bounds constraints, and 
using Malis and Bartoli intrinsic free 
parameterization with artificial weights. Results can 
be found on Figure 2. 

3 TWO VIEWS CASE 

Our objective here consists in comparing several 
ways to calibrate a two-cameras system, depending 
on initial knowledge available on the intrinsic 
parameters. Seven algorithms are compared. 

3.1 Parameter Choice 

The number of projective edof authorizes us to 
parameterize the space parameters with 7 parameters 
that must ideally be independent, being far from the 
possible critical configurations for self-calibration 
and 3D reconstruction: a theoretical study for these 
ones has been performed by Sturm (Sturm, 1997) for 
the specific two view case. We recover by the way, 
the 7 dof of the fundamental matrix (scaled matrix of 
rank 2), which encapsulates the 2 views epipolar 
geometry. This is a classical way to show that 2 
camera intrinsic parameters can be recovered from 
images alone by a self-calibration procedure, as it 
has been shown in a pioneered contribution by 
Hartley for the focal length in 1993(Hartley and 
Zisserman, 2006). 
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Using the above Euclidean camera model with the 
Euclidean standard gauge, we can add to our 5 
Euclidean parameters space, 2 more parameters 
chosen among the intrinsic ones to reach the 7 
parameters allowed. If we add more parameters, we 
will neither obtain a good 3D reconstruction nor 
good estimate of the intrinsic parameters 
(Bougnoux, 1998, Grossman and Victor, 1998) as 
the parameterization will not respect the self-
calibration constraints and will be over-
parameterized.  
Let us define two situations: (1) we can suppose that 
we have estimated the camera calibration parameters 
by some way, e.g. reading the camera data sheet: we 
know approximately the focal lengths, and can make 
the usual square pixel assumption (s=0, fu = fv = f) 
with (u0, v0) at image centres. (2) Using a 
calibration pattern, we can also consider focal 
lengths as unknown parameters and fix the other 
ones to their initial values. So that our set of 
parameters p = (pC, pX) are the camera parameters 
pC = (f1, f2, rx, ry, rz, tx, ty) plus the unknown 3D 
points pX = (X1…XN), with the standard Euclidean 
gauge and the self-calibration constraint imposed by 
fixing all the intrinsic parameters apart from the 2 
distinct focal lengths. 

3.2 Initialisation 

First we recover the relative camera orientation with 
the Essential matrix, via the estimated intrinsic 
parameters and the fundamental matrix calculated 
with the Gold Standard Algorithm (projective BA) 
as described in (Hartley and Zisserman, 2006).  
The initial Euclidean reconstruction of the 3D points 
is obtained with the 2 view optimal methods as 
described in (Hartley and Zisserman, 2006). 
If the true intrinsic are used, we call the obtained 
reconstruction, the initial calibrated reconstruction, 
and the initial pre-calibrated one if initial 
parameters are only approximated. This provides 
two initial parameters set (p01, p02) used as initial 
guesses for the Bundle Adjustment function. 

3.3 Algorithms  

We recall that the goal is not to recover very precise 
focal lengths, but to allow a better reconstruction of 
the scene by adding the 2 focal lengths as parameters 
during the optimisation process. 
First of all, we run the optimization (BA) with the 
standard Euclidean gauge for the initial calibrated 
reconstruction and initial calibrated one. Only 
Extrinsic and 3D points are free during the 

optimisation process. We obtain respectively the 
reconstruction called EBA calibrated and EBA 
pre-calibrated. The first one being the best 3D 
reconstruction we can obtain from noisy 
measurements without constraint on the structure 
parameters. These will be our reference data, as the 
algorithms used to obtain it are well known. 
Then, even if results do not appear here, we have 
verified that if there is only noise on the focal 
lengths, the free 7 parameters, exactly converge 
through the exact focal lengths values. This means 
that self-calibration constraint and Euclidean gauge 
defined a unique minimum on the parameter set, and 
not a sub manifold of the parameters set. This result 
is also true for more cameras as long as the camera 
parameterization and the Euclidean gauge impose 15 
independent gauge constraints, which can easily, be 
verified experimentally.  
Next we investigate the results of our algorithms, 
when the self-calibration constraints are badly 
defined by coarse approximations of the  intrinsic 
parameters, so that the correlation between intrinsic 
and extrinsic parameters (Shih et al., 1996) leads to a 
set of parameters that have not the required edof. 
To control the focal lengths during the BA process, 
it is assumed that we have probabilistic priors f = 
N(f0, sf) about them. A study of the focal length 
variability versus optical centre can be found in 
(Willson and Shafer, 1993). 
In the intrinsic free Euclidean BA called EBA 
intrinsic free, these priors are added by imposing a 
weight value to the cost function of the form ||f-f0||sf 
where the focal is a function of remaining 
parameters; other constraints coming from the fixed 
intrinsic parameters are imposed by adding heavily 
weighted artificial measurements as their variances 
are supposed to be null.  
The same procedure applied to the pre-calibrated 
case, leads to the reconstruction called EBA pre-
calibrated weighted reconstruction. 
We use then the numerical optimisation described in 
(section 2.2.3) where focal lengths are subject to 
linear bounds constraints (Gill et al., 1981) during 
the non linear least square optimisation eq.(21), 
leading to the EBA pre-calibrated bounds 
reconstruction. 

0j j7+3Mp= R
i=1..M 
j=1,2

min J(p) subject to |f -f | 2  
∈

≤  (21) 

3.4 Synthetic Image Data 

We model the object scene by 20 points randomly 
created in a sphere of diameter 1000 of centre (0, 0, 
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0). The 20 points agree with the maximum pair of 
points an operator can reasonably pick up in images 
pair.  
The two modelled cameras are of respective centres 
C1(1866, 316, 3523) and C2(-3922, 358, 6963) with 
2 respective optical axis pointing towards two 
distinct points of the scene Z1(-0.35, -0.15, -0.92) 
and Z2(0.51, -0.04, -0.85). The Y axis of each 
camera is nearly parallel to the ground, in order to 
model a realistic situation not critical for the self-
calibration  of the 2 distinct focal lengths (Sturm, 
1997). Ground truth is given by the respective 
camera focal lengths in pixels f1 = 1000 and f2 = 
2000 for 500X500 pixels camera images, and the 
respective Principal points image coordinates 
(260,240) and (230,220), with square pixel 
assumptions.  
Noise simulation on intrinsic parameters is imposed 
by choosing the following values for respective 
camera focal lengths (1100, 1800) and principal 
points (290,200), (210,280). 
For 10 values of the image noise variance, ranging 
from 0 to 2 pixels, we generate 100 corrupted 
images from the true one and run the distinct 
algorithms with the 2 sets of estimated parameters. 
To measure the 3D error Er on the reconstructed 
scene, which may not be exactly Euclidean, we use 
the average Horn reconstruction Error (Horn, 1987) 
that gives the absolute position of the reconstructed 
3D points from the true ones, eq.(22). 

n

r reconstructed true
i=1

1Ε  = ||X - (sRX + t)|| n∑  (22) 

In eq. (23), s, R and  t define a similarity of the 
projective space estimated by linear minimization of 
the following criterion 

n 2

recons
i=1

 (s,R,t) = Argmin ||X - (sRX + t)||true∑    

Some insights on the true projective transformation 
existing between the estimated reconstruction and 
the true one, have been studied by Bougnoux 
(Bougnoux, 1998). 

3.5 Simulation Results 

The best reconstruction, as guessed, is obtained by 
the EBA calibrated and the worst for small to 
average values of the noise level for the initial pre-
calibrated case. As expected too, beginning from 
the two sets of initial parameters, a better 3D 
reconstruction is provided by the Euclidean BA 
(with fixed intrinsic parameters).  
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r
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Figure 2: These graphs show the average Horn 
reconstruction errors for various algorithms applied on our 
synthetic set of points, generated from 2 distinct views. 

We now focus on the interesting case of noisy 
intrinsic parameters. The EBA pre-calibrated 
weighted gives the worst results. It is basically an 
intermediate between EBA pre-calibrated with 
fixed focal length (heavy weight) and the one (which 
is not represented) with totally free focal length 
(weak weight). As pointed out by Hartley and Silpa-
Anan (Hartley, 2002), in their quasi-linear Bundle 
Adjustment Approach (Bartoli, 2002), weights are 
difficult to choose optimally, but if there is little 
noise on intrinsic parameters and on images, then 
imposing weak bounds will generate the better 
results. However, for high value of the noise, it 
performed badly, as the better approach will be to 
fix the parameter or equivalently, imposed heavy 
weights to the focal lengths terms, as the correlation 
between the parameter set will be higher. The same 
remarks apply to the EBA intrinsic free, which 
performed significantly well. Finally, the better 
results are obtain with the propose optimization 
scheme, where the focal length are well controlled 
during the numerical optimization procedure. As the 
image noise is increased, the priors approach 
performs equally but asymptotically, we guess that 
the better reconstruction will be obtained for the 
EBA with fixed intrinsic. 

4 CONCLUDING REMARKS 

This paper points out some of the difficulties that 
arise when intrinsic cameras parameters are 
estimated in the same time as the structure and 
motion parameters via the classical Bundle 
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Adjustment procedure (sequential quadratic 
programming). 
We have linked the famous self-calibration counting 
argument to the number of degree of freedom in our 
parameter set in order to have a minimal 
parameterization of the projective dof derived from 
the calibrated Euclidean one. The so defined model 
implies non linear constraints on the parameters set  
and leads to interdependencies on the parameters 
that are difficult to deal with.  
The comparative studies in the two views case show 
that using artificial penalty on the cost function 
gives good results. Moreover, imposing priors on the 
focal lengths, even if the initial principal points are 
far from the true values, leads to correct 3D 
Euclidean reconstruction when the image noise is 
quite low. We conclude that for very noisy images 
with few points (20), the maximum likelihood 
estimator (MLE) performed better when intrinsic 
parameters are approximately fixed. To obtain even 
better results, a search control approach during the 
step damping of the BA may be helpful. However 
we see that even with perfect intrinsic parameters, 
the reconstruction is really dependant on the image 
noise and quite imprecise. A solution will be to use 
some constraints coming from the structure to 
improve the quality of the Euclidean reconstruction. 
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