DETECTING RECTANGULAR OBJECTS IN URBAN IMAGERY - A Re-Segmentation Approach
Thales Sehn Korting, Luciano Vieira Dutra, Leila Maria Garcia Fonseca
2009
Abstract
Image segmentation is a broad area, which covers strategies for splitting one input image into its components. This paper aims to present a re-segmentation approach applied to urban imagery, where the interest elements (houses roofs) are considered to have a rectangular shape. Our technique finds and generates rectangular objects, leaving the remaining objects as background. With an over-segmented image we connect adjacent objects in a graph structure, known as Region Adjacency Graph - RAG. We then go into the graph, searching for best cuts that may result in segments more rectangular, in a relaxation-like approach. Graph search considers information about object class, through a pre-classification stage using Self-Organizing Maps algorithm. Results show that the method was able to find rectangular elements, according user-defined parameters, such as maximum levels of graph searching and minimum degree of rectangularity for interest objects.
References
- Benediktsson, J., Pesaresi, M., and Amason, K. (2003). Classification and feature extraction for remote sensing images from urban areas based on morphological transformations. Geoscience and Remote Sensing, IEEE Transactions on, 41(9 Part 1):1940-1949.
- Borenstein, E., Sharon, E., and Ullman, S. (2004). Combining Top-Down and Bottom-Up Segmentation. In Computer Vision and Pattern Recognition Workshop, 2004 Conference on, pages 46-46.
- Chesnel, A.-L., Binet, R., and Wald, L. (2007). Object oriented assessment of damage due to natural disaster using very high resolution images. Geoscience and Remote Sensing Symposium, 2007. IGARSS 2007. IEEE International, pages 3736-3739.
- Cinque, L., De Rosa, F., Lecca, F., and Levialdi, S. (2004). Image retrieval using resegmentation driven by query rectangles. Image and Vision Computing, 22(1):15- 22.
- Donnay, J., Barnsley, M., Longley, P., (ESF), E. S. F., and GISDATA. (2001). Remote Sensing and Urban Analysis. Taylor & Francis.
- Duarte, A., Sánchez, Á., Fernández, F., and Montemayor, A. (2006). Improving image segmentation quality through effective region merging using a hierarchical social metaheuristic. Pattern Recognition Letters, 27(11):1239-1251.
- Egenhofer, M. and Franzosa, R. (1991). Point-set topological spatial relations. International Journal of Geographical Information Science, 5(2):161-174.
- Felzenszwalb, P. and Huttenlocher, D. (2004). Efficient Graph-Based Image Segmentation. International Journal of Computer Vision, 59(2):167-181.
- Feris, R., Krueger, V., and Cesar, R. (2004). A wavelet subspace method for real-time face tracking. RealTime Imaging, 10(6):339-350.
- Haralick, R. and Shapiro, L. (1985). Image segmentation techniques. Computer vision, graphics, and image processing, 29(1):100-132.
- He, Y., Wang, H., and Zhang, B. (2004). Color-based road detection in urban traffic scenes. Intelligent Transportation Systems, IEEE Transactions on, 5(4):309- 318.
- Kohonen, T. (2001). Self-Organizing Maps. Springer.
- Korting, T. S., Fonseca, L. M. G., Dutra, L. V., and Silva, F. C. (2008). Image Re-Segmentation - A New Approach Applied to Urban Imagery. pages 467-472.
- Leibe, B., Leonardis, A., and Schiele, B. (2004). Combined object categorization and segmentation with an implicit shape model. In Workshop on Statistical Learning in Computer Vision, ECCV, pages 17-32.
- Li, S., Jain, A., and service), S. O. (2005). Handbook of Face Recognition. Springer.
- Pérez, A., López, F., Benlloch, J., and Christensen, S. (2000). Colour and shape analysis techniques for weed detection in cereal fields. Computers and Electronics in Agriculture, 25(3):197-212.
- Roller, D., Daniilidis, K., and Nagel, H. (1993). Modelbased object tracking in monocular image sequences of road traffic scenes. International Journal of Computer Vision, 10(3):257-281.
- Schettini, R. (1993). A segmentation algorithm for color images. Pattern Recognition Letters, 14(6):499-506.
- Silva, M., Câmara, G., Souza, R., Valeriano, D., and Escada, M. (2005). Mining Patterns of Change in Remote Sensing Image Databases. In The Fifth IEEE International Conference on Data Mining, New Orleans, Louisiana, USA.
- Tremeau, A. and Colantoni, P. (2000). Regions adjacency graph applied to color image segmentation. Image Processing, IEEE Transactions on, 9(4):735-744.
- Zahn, C. (1971). Graph-Theoretical Methods for Detecting and Describing Gestalt Clusters. Transactions on Computers, 100(20):68-86.
Paper Citation
in Harvard Style
Sehn Korting T., Vieira Dutra L. and Garcia Fonseca L. (2009). DETECTING RECTANGULAR OBJECTS IN URBAN IMAGERY - A Re-Segmentation Approach . In Proceedings of the Fourth International Conference on Computer Vision Theory and Applications - Volume 2: VISAPP, (VISIGRAPP 2009) ISBN 978-989-8111-69-2, pages 231-236. DOI: 10.5220/0001806702310236
in Bibtex Style
@conference{visapp09,
author={Thales Sehn Korting and Luciano Vieira Dutra and Leila Maria Garcia Fonseca},
title={DETECTING RECTANGULAR OBJECTS IN URBAN IMAGERY - A Re-Segmentation Approach},
booktitle={Proceedings of the Fourth International Conference on Computer Vision Theory and Applications - Volume 2: VISAPP, (VISIGRAPP 2009)},
year={2009},
pages={231-236},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0001806702310236},
isbn={978-989-8111-69-2},
}
in EndNote Style
TY - CONF
JO - Proceedings of the Fourth International Conference on Computer Vision Theory and Applications - Volume 2: VISAPP, (VISIGRAPP 2009)
TI - DETECTING RECTANGULAR OBJECTS IN URBAN IMAGERY - A Re-Segmentation Approach
SN - 978-989-8111-69-2
AU - Sehn Korting T.
AU - Vieira Dutra L.
AU - Garcia Fonseca L.
PY - 2009
SP - 231
EP - 236
DO - 10.5220/0001806702310236