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Abstract: We propose a new method for finding initial codevectors for vector quantization. It is based on Principal 
Component Analysis and uses error-directed subdivision of the eigenspace in reduced dimensionality. Addi-
tionally, however, we include shape-directed split decisions based on eigenvalue ratios to improve the visual 
appearance. The method achieves about the same image quality as the well-known k-means++ method, 
while providing some global control over compression priorities. 

1 INTRODUCTION 

Vector quantization (Gray, 1984; Gersho and Gray, 
1992) has become one of the standard methods for 
lossy image compression. Vectors are formed by 
non-overlapping blocks of n*m pixels, in case of 
RGB images the vector dimension is n*m*3. In VQ, 
the potentially large set of image vectors is replaced 
by a small set of representative vectors (here called 
codevectors), while trying to minimize the overall 
error. Often, clustering methods are used to find a 
proper set of codevectors (collectively called a 
codebook). A frequently used method is k-means 
(Lloyd, 1982). Starting from an initial set of random 
codevectors (seeds), each vector is assigned to its 
nearest codevector, thereby forming clusters. Once 
clustering is finished, the codevectors are moved to 
the center of their respective cluster, and then 
clustering is started anew. This process is repeated 
until the system reaches a stable state. Each vector 
will now be replaced by the index of its codevector 
in the codebook. Decompression merely consists of 
a table look-up. 

As a number of authors have pointed out, the 
accuracy of the clustering algorithm depends to a 
large degree on the selection of seeds, since 
clustering typically converges to only locally 
optimal solutions (Barbakh and Fyfe, 2008; Fritzke, 
1997; Ostrovsky et al., 2006). Accordingly, much 
research effort has been spent on improved seeding 
methods (Bradley and Fayyad, 1998; Pena et al., 
1999). Central to this work, however, is the recently 

proposed k-means++ algorithm (Arthur and 
Vassilvitskii, 2007). 

In this short note we demonstrate one of the 
weaknesses of the k-means++ selection method and 
propose a method for alleviating these effects. We 
compare random selection, k-means++ and the 
proposed PCA-based seeding method. 

2 PCA-BASED SEEDING 

Basically, the method generates a potentially 
unbalanced binary subdivision tree. As opposed to 
other trees such as kd-trees, our subdivision 
algorithm is error-guided and uses image properties 
reflected in the eigenvalues. As for all trees, we have 
to make decisions about which node to split, and 
where the cut should be made. A detailed description 
follows. 

All image vectors are subjected to a PCA. The 
split is made using the principal component of each 
pixel block. Several locations to place the cut are 
possible, such as a median cut, but best results are 
achieved by using the center of gravity. For each of 
the two groups the image error contribution is 
computed, i.e., the sum of squared errors relative to 
their respective centers of gravity. The one with the 
larger error is split, using the same procedure as for 
the parent. For the split decisions, all subvolumes 
generated so far are taken into account. Processing is 
finished when there are as many leaf nodes as there 
are codevectors to assign. 
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This method achieves the same or even slightly 
better image quality (in terms of PSNR, see Table 1) 
compared to k-means++. 

Looking at the decompressed images from 
random seeding (Figure 1d), k-means++ seeding 
(Figure 2a) and PCA-based seeding (Figure 2f), it is 
striking to see how well the smooth color transition 
of the sky is reproduced by random seeding. 
However, this is not a hidden power of the k-means 
algorithm, but simply due to the random choice if 
selection is uniformly distributed. This is reflected in 
the large number of seeds from sky in the codebook 
(see Figure 1e). 

In contrast, both the k-means++ and the PCA-
based seeding produce noticeable banding artefacts. 
In both cases, this is a direct consequence of the 
design intentions, since the involved image vectors 
are close to each other and won’t cause significant 
image errors. While it is non-obvious how a remedy 
could be integrated into the k-means++ algorithm, 
we will present a method for reducing these artifacts 
in the PCA-based seeding. It takes advantage of the 
fact that processing is done in eigenspace. 

At some point in the subdivision process the sky 
(or similar areas) will have been separated into a 
distinct cluster, and will be subjected to a PCA. It’s 
quite obvious that the eigenvalues will exhibit a 
certain property: they will drop sharply in size since 
all image vectors are more or less aligned from dark 
to light blue. This property is less pronounced or 
absent in more noisy or diverse image areas. 

Thus we can use the eigenvalue statistics (cluster 
shape) as a further split criterion. As a simple 
example, we have used the ratio of the largest (ev1) 
and the second largest (ev2) eigenvalues to select the 
group to be split next. That is, if ev1/ev2 > T the 
subvolume is split regardless of the image error. 

For Figure 3a, we have set the threshold T to 2.5, 
whereas for Figure 3f T was set to 1.5. As can be 
seen in the initial codebooks (see Figure 3b, g), the 
allocation of codevectors to sky can be controlled 
quite well. Other than reserving more codevectors to 
these specially shaped clusters, operation is not 
affected and thus most details are still preserved as 
in Figure 2f. “Codevector stealing” begins to 
become visible in Figure 3f, (see the letter “S” in 
Figure 3i). However, T=2.5 seems to be a good 
compromise, while T=1.5 appears to be overdone. 

Further parameters to include in the split 
decision are the population count of a cluster, and 
the absolute spatial extent along the principal 
component. 

It should be mentioned that the method is neutral 
in case there are no such areas in the image, since 

then a corresponding eigenvalue ratio will not occur. 
The opposite doesn’t hold, though. A high ratio 
doesn’t mean that there is a smooth transition, as in 
the case of the brown building, which nevertheless 
gets assigned more codevectors. Excluding these 
areas for true unsupervised compression is subject of 
future research. 

3 RESULTS 

To demonstrate the differences in image quality, we 
have chosen a set of images from 
http://www.imagecompression.info. Each image was 
compressed into its own codebook. We have used a 
block size of 8x8 pixels for a vector dimension of 
192. The number of codevectors was chosen such 
that the compression rate was roughly the same for 
each image. The results are given in Table 1, in 
terms of PSNR [dB]. 

Table 1: Seeding comparison. 

Img. Name Rand KM++ PCA bpp 
Artificial 31.8 35.7 37.9 2.2 
Bridge 29 29.5 29.5 2.1 
Cathedral 32.1 32.4 32.6 2.3 
Deer 30.1 30.5 30.7 2.2 
Fireworks 29.8 37.3 42.9 2.3 
Hdr 35.7 38.5 39 2.2 
Leaves 26.3 27 27.1 2.3 

 
As test case for showing the potential of 

eigenvalue-based subdivision we have selected an 
image with the following properties: 

• a large area with a smooth color transition to 
make quantization artefacts (banding) visible, 

• a high amount of image detail with known 
shape such as traffic lights or street signs. 

Original image size is 1024x768 pixels, or 
12,288 blocks. Since the algorithms perform roughly 
the same on small codebooks, we have chosen a 
codebook of 1k codevectors to expose the 
differences. Processing times and image quality are 
summarized in Table 2. 

Table 2: Compression time and image quality. 

Method Seeding 
[s] 

Clustering 
[s] 

PSNR 
[dB] 

Random 0.016 37.5 24.17 
KM++ 10 35.6 24.99 
PCA 39.3 36.5 25.07 
PCA, T=2.5 67.6 36.8 25.03 
PCA, T=1.5 69 36.8 24.85 
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Figure 1: a) original photograph, resolution 1024x768; b) cut-out of size 110x80; c) cut-out 50x80; d) k-means clustering 
using random seeds; e) initial codebook (1k codevectors); f) final codebook; g) and h) cut-outs of decompressed image. 

 
Figure 2: a) k-means++ seeding; b) initial codebook; c) final codebook; d) and e) cut-outs from a); f) PCA-based seeding; 
g) initial codebook; h) final codebook; i) and j) cut-outs from f). 
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Figure 3: a) PCA-based seeding, T=2.5; b) initial codebook; c) final codebook; d) and e) cut-outs from a); f) PCA-based 
seeding, T=1.5; g) initial codebook; h) final codebook; i) and j) cut-outs from f). 

4 CONCLUSIONS 

We have presented an alternative to k-means++ 
seeding which performs equally well in terms of 
PSNR. It is based on Principal Component Analysis, 
and performs error-directed subdivision in 
eigenspace. Most notably, the method offers some 
global parameters to adjust compression priorities 
based on local image properties. These can be used 
to reduce quantization artefacts on smooth color 
transitions. 

It might appear to be somewhat irrelevant to try 
to improve the appearance of such image areas, 
especially in the view of the image errors 
everywhere else. However, for other image material 
with less recognizable features like rocks or bushes, 
banding on such areas might become the dominant 
source of visual image degradation. Also, with 
careful use of the compression parameters the 
achievable image improvement is free, i.e., it does 
not increase the error significantly in other parts of 
the image. 
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