chemotherapy randomized trial. Journal of the Na-
tional Cancer Institute, 99(7):506–515.
Amaral, T., McKenna, S., Robertson, K., and Thompson,
A. (2008). Classification of breast-tissue microarray
spots using colour and local invariants. In IEEE In-
ternational Symposium on Biomedical Imaging: From
Nano to Macro, pages 999–1002, Paris, France. IEEE.
Axelrod, D., Miller, N., Lickley, H., Qian, J., Christens-
Barry, W., Yuan, Y., Fu, Y., and Chapman, J. (2008).
Effect of Quantitative Nuclear Image Features on Re-
currence of Ductal Carcinoma In Situ (DCIS) of the
Breast. Cancer Informatics, 4:99–109.
Bishop, C. M. (2006). Pattern Recognition and Ma-
chine Learning (Information Science and Statistics).
Springer-Verlag New York, Inc., Secaucus, NJ, USA.
Camp, R., Charette, L., and Rimm, D. (2000). Validation
of tissue microarray technology in breast carcinoma.
Laboratory Investigation, 80(12):1943–1949.
Chapman, J., Miller, N., Lickley, H., Qian, J., Christens-
Barry, W., Fu, Y., Yuan, Y., and Axelrod, D. (2007).
Ductal carcinoma in situ of the breast (DCIS) with
heterogeneity of nuclear grade: prognostic effects of
quantitative nuclear assessment. BMC Cancer, 7:174.
Chu, W. and Ghahramani, Z. (2005). Gaussian processes
for ordinal regression. Journal of Machine Learning
Research, 6:1019–1041.
Dalle, J., Leow, W., Racoceanu, D., Tutac, A., and Putti,
T. (2008). Automatic Breast Cancer Grading of
Histopathological Images. In International Confer-
ence of the IEEE Engineering in Medicine and Biol-
ogy Society, pages 3052–3055.
Detre, S., Saccani Jotti, G., and Dowsett, M. (1995). A
”quickscore” method for immunohistochemical semi-
quantitation: validation for oestrogen receptor in
breast carcinomas. Journal of Clinical Pathology,
48(9):876–878.
Doyle, S., Agner, S., Madabhushi, A., Feldman, M., and
Tomaszewski, J. (2008). Automated grading of breast
cancer histopathology using spectral clustering with
textural and architectural image features. In IEEE In-
ternational Symposium on Biomedical Imaging: From
Nano to Macro, pages 496–499. IEEE.
Kononen, J., Bubendorf, L., Kallionimeni, A., Brlund, M.,
Schraml, P., Leighton, S., Torhorst, J., Mihatsch, M.,
Sauter, G., and Kallionimeni, O. (1998). Tissue mi-
croarrays for high-throughput molecular profiling of
tumor specimens. Nature Medicine, 4(7):844–847.
Kostopoulos, S., Cavouras, D., Daskalakis, A., Bougioukos,
P., Georgiadis, P., Kagadis, G., Kalatzis, I., Rava-
zoula, P., and Nikiforidis, G. (2007). Colour-Texture
based image analysis method for assessing the Hor-
mone Receptors status in Breast tissue sections. In
International Conference of the IEEE Engineering
in Medicine and Biology Society, pages 4985–4988.
IEEE.
Nabney, I. (2002). NETLAB: algorithms for pattern recog-
nition. Springer-Verlag, New York.
Petushi, S., Garcia, F., Haber, M., Katsinis, C., and Tozeren,
A. (2006). Large-scale computations on histology im-
ages reveal grade-differentiating parameters for breast
cancer. BMC Medical Imaging, 6:14.
Zhang, J., Petushi, S., Regli, W., Garcia, F., and Breen, D.
(2008). A study of shape distributions for estimating
histologic grade. In International Conference of the
IEEE Engineering in Medicine and Biology Society,
pages 1200–1205.
VISAPP 2009 - International Conference on Computer Vision Theory and Applications
248