over other existing techniques. These results are probably at the same level that could
be expected for expert manual classification.
References
1. E.J. Feuer, L.M. Wun: DEVCAN: Probability of Developing or Dying of Cancer. Version
4.0. Bethesda MD: National Cancer Institute. (1999)
2. A.M. Knutzen, J.J. Gisvold: Likelihood of malignant disease for various categories of mam-
mographically detected, nonpalpable breast lesion. Mayo Clin Proc, Vol. 68 (1993) 454–460
3. D.B. Kopans: The positive predictive value of mammography. AJR, Vol. 158 (1992) 521–526
4. G.M. te Brake, N. Karssemeijer: Automated detection of breast carcinomas that were not
detected in a screening program. Radiology”, Vol. 207 (1998) 465–471
5. M. Wallis, M. Walsh et al.: A review of false negative mammography in a symptomatic
population. Clin Radiol Vol. 44 (1991) 13–15
6. J.N. Wolfe: Breast pattern as an index of risk for developing breast cancer. AJR, Vol. 126
(1976) 1130–1139
7. J.N. Wolfe: Risk for breast cancer development determined by mammographic parenchymal
pattern. Cancer, Vol. 37 (1976) 2486–2492
8. N.F. Boyd, J.W. Byng, R.A. Jong, et al.: Quantitative classification of mammographic densi-
ties and breast cancer risk: Results from tha Canadian national breast screening study. J. Nat.
Cancer Inst., Vol. 87 (1995) 670–675
9. A.F. Saftlas, R.N. Hoover, L.A. Brinton, et al.: Mammographic densities and risk of breast
cancer. Cancer, Vol. 67 (1991) 2833–2838
10. C. Byrne, C. Schairer, J.N. Wolfe, et al.: Mammographic features and breast cancer risk:
Effects with time, age and menopause status. J. Nat. Cancer Inst., Vol. 87 (1995) 1622–1629
11. I.T. Gram, E. Funkhouser, L. Tabar: The Tabar classification of mammographic parenchymal
patterns. Eur. J. Radiol., Vol. 124, (1997) 131–136
12. American College of Radiology (ACR): Illustrated Breast Imaging Reporting and Data Sys-
tem (BI-RADS). 3rd edn. Reston, VA: American College of Radiology, (1998) 167–181/
13. N. Jamal, K.H. Ng, L.M. Looi, et al.: Quantitative assessment of breast density from digitized
mammograms into Tabar’s patterns. Phys. Med. Biol., Vol. 51 (2006) 5843–5857
14. N. Karssemeijer: Automated classification of parenchymal patterns in mammograms.
Physics in Medicine and Biology, Vol. 43 (1998) 365–378
15. P.K. Saha, J.K. Udupa, E.F. Conant, D. Sullivan: Breast tissue density quantification via
digitized mammograms. IEEE Trans. on Medical Imaging, (8) Vol. 20 (2001) 792–803
16. C. Klifa, J. Carballido-Gamio, L. Wilmes, et al.: Quantification of breast tissue index from
MR data using fuzzy clustering. Proceedings of the 26th Anual International Conference of
th IEEE EMBS, San Francisco, CA, USA (2004) 1667–1670
17. A. Oliver, J. Freixenet, A. Bosch, et al.: Automatic classification of breast tissue. Lecture
Notes in Computer Science, Vol. 3523 (2005) 431–438
18. A. Oliver, J. Freixenet, R. Marti, et al.: A novel breast tissue density classification method-
ology. IEEE Trans Inf Technol Biomed., Vol. 12 (2008) 55–65
19. I. Muhimmah, R. Zwiggelaar: Mammographic density classification using multiresolution
histogram information. Proceedings of the International Special Topic Conference on Infor-
mation Technology in Biomedicine, (2006)
20. J. Suckling, J. Parker et al.: The mammographic images analysis society digital mammogram
database. Exerpta Medica. International Congress Series, Vol. 1069 (1994) 375–378
21. M. Masek, S.M. Kwok, C.J.S. deSilva et al.: Classification of mammographic density using
histogram distance measures. Proceedings of the World Congress on Medical Physics and
Biomedical Engineering, (2003)
90