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Abstract: Uncompressed multimedia data such as high resolution images, audio and video require a considerable 
storage capacity and transmission bandwidth on telecommunications systems. Despite of the development 
of the storage technology and the high performance of digital communication systems, the demand for huge 
files is higher than the available capacity. Moreover, the growth of image data in database applications 
needs more efficient ways to encode images. So image compression is more important than ever. One of the 
most used techniques is compression by wavelet, specified in the JPEG 2000 standard and recommended 
also for medical image DICOM database. This work seeks to investigate the wavelet image compression-
denoising technique related to the wavelet family bases used (Haar, Daubechies, Biorthogonal, Coiflets and 
Symlets), database content and noise level. The target of the work is to define which combination present 
the best and the worst compression quality, through quality evaluation by quantitative functions: Root Mean 
Square Error (RMSE), Sign Noise Ratio (SNR) and Peak Sign Noise Ratio (PSNR).  

1 INTRODUCTION 

Huge images are used in an increased number of 
applications. They require a considerable storage 
capacity and transmission bandwidth. Wavelet 
compression, used in the DICOM standard (Digital 
Imaging and Communications in Medicine) and 
JPEG 2000 format is the most used image 
compression technique (Stahl et al., 2000; Ouled 
Zaid et al., 2002). Simultaneous compression and 
denoising is and important aspect of wavelets 
compression (Bruni and Vitulano, 2007). These, 
namely comp-denoisers, are mainly based on 
thresholding the components dominated by noise. 
We investigate the quality concerning the blur level, 
the image content and the type of wavelet used. The 

idea is to modify out the coefficient components 
dominated by noise. This improves the image 
quality and the compression rate as well. This work 
compares results of 36 different wavelet types. For 
this we implement in the same environment five 
families of bases: Haar, Daubechies, Biorthogonal, 
Coiflets and Symlets with many possibilities. They 
are used to compress a group of natural and 
synthetic images in different resolutions. We 
consider three level of degradation by Additive 
White Gaussian Noise (AWGN). The target of the 
work is to propose a comp-denoiser adapted to each 
type of images and technique used. We try to define 
which aspect present the best and the worst 
compression quality, through evaluation of the Root 
Mean Square Error (RMSE), Sign Noise Ratio 
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(SNR) and Peak Sign Noise Ratio (PSNR). By 
analyzing the results is possible to verify that the 
best choice related to quality is more dependent to 
the image content than expected initially.  

The fidelity with respect to the original is an 
important aspect of lossy compression methods. 
However, quality is not an easy issue to measure. 
Comparisons can be performed considering visual 
quality of the decompressed image or quantitatively 
using error evaluators. These are pointwise 
information associated with the image generated by 
subtracting the differences between the original 
image and the decompressed images. Figure 1 shows 
an example of a compression error for the Lena 
image (Conci et al., 2008). The pointwise 
differences were amplified to fit into the interval 
between 0 and 255 in order to facilitate their 
visualization. The Haar coefficients in this example 
are adjusted to get a file 80% reduced. Comparing 
the performance using error images makes it easier 
to see where the decompressed image has been 
slightly changed: some elements with low spatial 
frequencies have been removed improving the 
image. If these elements originated from noise the 
compression process additionally improves the 
image quality. Moreover, the same idea can be used 
to improve the details if the noise is responsible of 
blurring the images.  

The following is an outline of this paper: in 
Section 2 we consider the relation between wavelet 
based denoising and wavelet coefficients. Section 3 
gives a brief review on wavelets types and provides 
details of the experiments. Finally, conclusions are 
presented, in section 4. 

 

 
Figure 1: “Lena” (128 x 128), its compressed version by 
Haar and the rescaled error image. 

2 DENOISING BY WAVELET 

The low frequency components (smooth variations) 
constitute the base of a natural image. The high 
frequency components add upon low frequency 
components to refine the image, thereby giving a 
detailed image. Separating the smooth variations and 
details of the image can be done in many ways. One 
such way is the decomposition of the image using a 

Discrete Wavelet Transform (DWT) in the following 
way: A low pass filter (LPF) and a high pass filter 
(HPF) are chosen, such that they exactly halve the 
frequency range between themselves. These are 
called the Analysis Filter Pair. First, the LPF is 
applied for each row of data, thereby getting the low 
frequency components of the row. But since the LPF 
is a half band filter, the output data contains 
frequencies only in the first half of the original 
frequency range. So, they can be sub sampled by 
two and the output data now contains only half the 
original number of samples. Now, the HPF is 
applied for the same row of data, and similarly the 
high pass components are separated, and placed by 
the side of the low pass components. This procedure 
is done for all rows. Next, the filtering is done for 
each column of the intermediate data. The resulting 
two-dimensional array of coefficients contains four 
bands of data, each labeled as LL (low-low), HL 
(high-low), LH (low-high) and HH (high-high). The 
LL band can be decomposed once again in the same 
manner producing even more sub bands. This can be 
done up to any level, thereby resulting in a 
pyramidal decomposition as shown in figure 2.  
 

 
Figure 2: Pyramidal decomposition. 

The wavelet transform calculates inner products 
of a signal with a set of basis functions to find 
coefficients that represent the signal: 

 
  (1) 

 
where the two-dimensional set of coefficients aj,k is 
the DWT of f(t). When the index k changes, the 
location and scaling of the wavelet moves along the 
time axis. When the index j changes, the shape of 
the wavelet changes in scale. As the scale becomes 
finer (j larger), the time steps become smaller. Both 
the narrower wavelet and the smaller steps allow a 
representation of greater detail or resolution. In 
order to use the idea of multi resolution, a scaling 
function j(t) is used to define the wavelet (Kubrusly. 
and Levan, 2006). Since this is a linear system, the 
signal can be reconstructed by a weighted sum of the 
basis functions (Levan, and Kubrusly, 2007). A 
signal's energy, therefore, is usually well represented 
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by just a few wavelet expansion coefficients. 
Wavelet analysis produces several important 
benefits, particularly for image compression. First, 
an unconditional basis causes the size of the 
expansion coefficients to drop off with j and k for 
many signals. Since wavelet expansion also allows a 
more accurate local description and separation of 
signal characteristics, the DWT is very efficient for 
compression. Secondly, a great variety of different 
wavelet types provides flexibility to design wavelets 
to fit individual applications. The LL band at the 
highest level can be classified as most important, 
and the other 'detail' bands can be classified as of 
lesser importance, with the degree of importance 
decreasing from the top of the pyramid to the bands 
at the bottom (figure 2) (Conci et al., 2008).  

The wavelets denoising main aspect is to 
distinguish between low and high energy regions, 
and modify the coefficients using an adaptive 
thresholding strategy. When noise is added to the 
image, it tends to increase the magnitude of the 
wavelet coefficients on average. Specifically, in the 
regions where one expects the coefficients to be 
dominated by noise, consequently most of these 
coefficients should be removed since the noise is 
highly noticeable here. In regions of sharp 
variations, the coefficients have a lot of energy due 
to the signal, and some due to noise (which is not as 
visible in these regions), thus they should be kept to 
ensure that signal details are retained.  

The wavelet thresholding approach removes 
noise from wavelet coefficients of the detail, while 
keeping the lowest resolution coefficients unaltered. 
It filters each noisy wavelet coefficient, from the 
detail sub-band, with a non linear thresholding 
function. The problem is to estimate correctly the 
threshold value in order to obtain good performance. 
Statistical approaches have been addressed for 
wavelet-based denoising (or thresholding). Wavelet 
hard threshold has been proposed (Donoho and 
Johnstone, 1994). As an alternative, a denoising 
algorithm via soft-thresholding has been developed 
to remove noise from wavelet coefficients (Donoho, 
1995). Many variants and improvements of these 
works have appeared in the literature. It has been 
shown that optimal thresholding can be carried out 
based on the ratio between noise and original signal 
variance at each decomposition sub-band. The T  
value can then be well approximated by:  
(Ruggeri. and Vidakovic, 1998). This alternative is 
implemented using the Wavelet Toolbox 
(Mathworks, 2001) for Matlab and used in our 
experiments to exploit the relation of the results to 
the image type and wavelet family. 

3 EXPERIMENTAL RESULTS 

The JPEG-2000 standard (selected in 2001 for 
inclusion in the DICOM standards) is based on the 
discrete wavelet transform using the Daubechies 
(9,7) biorthogonal wavelet, also named the Cohen-
Daubechies-Feauveau 9/7 wavelet (Daubechies, 
1992). Moreover, a coding denoising procedure 
based on a thresholding function has been integrated 
to JPEG2000 part II standard which is designed to 
support a variety of applications, including the 
compression and transmission of medical images 
(Stahl et al. 2000). But is this the best choice 
concerning quality at any time? In this work we 
compared the results from 36 different variations of 
wavelets compression schemes to explore their 
differences related to image content and quality. 
Two grouped images with different levels of 
complexities and content are used to evaluate the 
relation among fidelity, image content and noise 
level. The contents consist of humans, landscape, 
things, textual information and synthetic objects. 
The first group is formed by the natural images: 
Lena, Cameraman, Goldhill, and Peppers. The 
second group is formed by the synthetic images: 
Circle, Checkerboard, Sinusoidal Gray Level and 
Text. These images are used on three resolutions 
(128x128, 256x256 and 512x512). They are tested 
without noise and altered by Additive White 
Gaussian Noise (AWGN) with three noise levels: 

5=σ , 10=σ , and 20=σ . They are 
reconstructed after compression and denoise by 
thresholding. To choose these images as samples we 
observed four aspects: the main motive, the number 
of elements, the richness or simplicity of the 
background. The performance of each approach is 
evaluated by fidelity comparing the original versus 
the same images after compression/denoising and 
decompression. Figures 3 and 4 show the first and 
third noise versions of these images, respectively. It 
should be noted that only two of these images are 
binary with well defined boundaries (Circle and 
Checkerboard). Comparing figure 3 and 4 you see 
that they are extremely sensitive to noise. 
Performance analysis was done using three objective 
evaluation criteria: Root Mean Square Error 
(RMSE), Signal to Noise Ratio (SNR) and Peak 
Signal to Noise Ratio (PSNR). Small RMSE means 
better results: the denoised image is close to the 
original. High values for SNR means lower error and 
this translates to a high value of PSNR. The main 
drawback of using RMSE and SNR as a measure of 
image quality is that in many instances these values 
do not match the quality perceived by the human 

σσ 2
nT =
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visual system (Wang et al., 2004). The PSNR is 
more representatives. 

 

 

Figure 3: Tested image with low noise ( 5=σ ). 

The test results (3456 cases) are presented in 96 
tables or 288 graphs (one graph for each evaluation 
criteria). Eight of these graphs are presented on 
figures 5 to 7. In this graphs the horizontal axe 
represent each one of the 36 type of wavelets used. 

Figure 5 shows the PSNR results for the Peppers 
image with low noise ( ) but with at two different 
resolution. Comparing these it is possible to see that 
the worst results at both resolutions is related to the 
use of Biorthogonal 3.1 type, while the best wavelet 
type is not the same  for both  cases (for small image 

    
 

    
 

    
 

    

Figure 4: Images with high noise ( 20=σ ).  

it is the Biorthogonal 1.3 but for the 512x512 
version of the same image it moves to the 
Daubechies 10 type). Figure 6 shows the results for 
the Cameraman image at same resolution (256x256) 
but with two different noise levels (5 and 20). 
Although, in these case the best and worst results are 
presented by the same wavelet type (that is Haar and 
Biorthogonal 3.1), all others intermediate position 
have been changed. More significant yet are the 
changes associated with the image content as can be 
seen comparing the completely different pattern of 
the graphs considering the RMSE for the four 
synthetic images in the same resolution without 
noise (figure 7). The results have been analyzed and 
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combined in different manners. The graphs for 
natural images related to the wavelets type used 
have been presents similar distribution considering 
all noise level and denoising approach. They are 
combined in a group of natural images. The non 
binary synthetic images (text and sinusoidal) 
presents more similar behavior for median and high 
noise level. But the circle and chessboard images 
present no characteristics that permits adequate 
conclusion related with what could be pointed as 
best wavelet type for compression and denoising. 

 

 
Figure 5: Example of PSNR results variation considering 
only resolution variation. 

4 CONCLUSIONS 

In this paper presents a broad analysis for wavelet 
based compression and denoising of synthetic and 
photographic or natural images. Our experiments 
compare a thresholding process to remove additive 
noise from three noisy versions (low Φ.5, median 

10=σ  and high 20=σ ). Averaging the results, the 
Haar and Biorthogonal 1.3 types present the first and 
second best quality. Worst results are obtained with 

the Biorthogonal 3.1 type. Considering the image 
content, they show more dependent on the image 
type and wavelet (Haar, Daubechies, Biorthogonal, 
Coiflets, or Symlets) used than could be expected. 
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Figure 6: Example of PSNR results variation considering 
only noise level variation. 

The performance assessment of the compression 
denoising results was performed by RMSE, SNR 
and PSNR objective measures. Our experiments 
showed that by incorporating a thresholding in the 
wavelet based coding chain, we can improve the 
quality of the compressed natural noisy image, 
without sacrificing performance and without 
increasing the computational complexity, but this is 
not effective on all types of synthetic images. The 
thresholding process improve the visual quality of 
natural images on the practically the same amount of 
the noise added. Based in this comparative study 
only the binary synthetic images present the 
denoised process related to the noise level. It is 
expected that the obtained results can be further 
improved if the other denoised scheme are exploited. 
Hence, we are currently investigating context 
adaptive extensions of the used thresholding process 
and others compression/denoising process to wavelet 
based coding. 
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Figure 7: Example of RMSE results variation with the wavelet type for the synthetic image group without noise. 

ACKNOWLEDGEMENTS 

This work is partially supported by CAPES and 
CNPq. 

REFERENCES 

Bruni, V. and Vitulano, D. (2007) ‘Combined image 
compression and denoising using wavelets’, Journal of 
Signal Processing, Vol. 22, pp.86-101. 

Conci, A. Azevedo E. and Leta, F.R (2008) Computação 
Gráfica,Vol. 2. Elsevier, Rio de Janeiro. 

Daubechies, I. (1992), ‘Ten lectures on wavelets’, In 
Regional Conf. Applied Mathematics Society for 
Industrial and Applied Mathematics, Philadelaphia. 

Donoho, D.L. and Johnstone, I.M. (1994) ‘Ideal spatial 
adaptation via wavelet shrinkage’, Journal of 
Biometrika, Vol. 81, pp.425-455. 

Donoho, D.L. (1995) ‘De-noising by soft-thresholding’, 
Journal of IEEE Transactions on Information Theory, 
Vol. 41, No. 3, pp.613-627. 

Kubrusly, C.S. and Levan, N. (2006) ‘Abstract wavelets 
generated by Hilbert Space Shift Operators’, Advances 
in Mathematical Sc. and Applications 16, 643-660. 

Levan, N and C.S. Kubrusly, C. S. (2007) ‘Reversed 
Wavelet Functions and Subspaces’, International 
Journal of Wavelets, Multiresolution and Information 
Processing 5, 99-707.  

Mathworks, Inc.(2001) ‘Wavelet Toolbox: User's Guide”. 
Ouled Zaid, A., Olivier, C. and Marmoiton, F. (2002) 

‘Wavelet Image Coding with Adaptive Dead-zone 
Selection: Application to JPEG2000’, Proceedings of 
the IEEE International Conference on Image 
Processing, Vol. 2371, pp. 253-256.  

Stahl, J.N., Zhang, J., Zellner, C., Pomerantsev, E. V., 
Chou, T.M., and Huang, H.K. (2000) 
‘Teleconferencing with Dynamic Medical Images’, 
Journal of IEEE Transaction on Information 
Tecnology in Biomedecine, Vol. 4, No. 2, pp.88-96. 

Ruggeri, F. and Vidakovic, B. (1998) ‘A Bayesian 
decision theoretic approach to wavelet thresholding’, 
Journal of American Statistic Association, Vol. 93, 
No. 441, pp.173–179. 

Wang, Z., Bovik, A.C., Sheikh, H.R., and Simoncelli, E.P. 
(2004) ‘Image quality assessment: From error 
measurement to structural similarity’, IEEE Trans. on 
Image Process., Vol. 13, No. 4, pp.600-612. 

 

 

VISAPP 2009 - International Conference on Computer Vision Theory and Applications

84


