INTEGRATION OF INTENSITY EDGE INFORMATION INTO THE REACTION-DIFFUSION STEREO ALGORITHM
Atsushi Nomura, Makoto Ichikawa, Koichi Okada, Hidetoshi Miike
2009
Abstract
The present paper proposes a visual integration algorithm that integrates intensity edge information into a stereo algorithm. The stereo algorithm assumes two constraints of continuity and uniqueness on disparity distribution. Since depth discontinuity around object boundaries does not satisfy the continuity constraint, it causes numerous errors in stereo disparity detection. In order to reduce the errors due to the depth discontinuity, we propose a new algorithm that integrates intensity edge information into the stereo algorithm. The stereo algorithm utilizes reaction-diffusion equations, in which diffusion coefficients control the continuity constraint. Thus, we introduce anisotropic diffusion fields into the reaction-diffusion equations; that is, we modulate the diffusion coefficients according to results of edge detection applied to image intensity distribution. We demonstrate how the proposed algorithm works around areas having depth discontinuity and confirm quantitative performance of the algorithm in comparison to other stereo algorithms.
References
- Adamatzky, A., Costello, B. D. L., and Asai, T. (2005). Reaction-Diffusion Computers. Elsevier, Amsterdam.
- Black, M. J., Sapiro, G., Marimont, D. H., and Heeger, D. (1998). Robust anisotropic diffusion. IEEE Transactions on Image Processing, 7(3):421-432.
- Deng, Y., Yang, Q., Lin, X., and Tang, X. (2007). Stereo correspondence with occlusion handling in a symmetric patch-based graph-cuts model. IEEE Transactions on Pattern Analysis and Machine Intelligence, 29(6):1068-1079.
- FitzHugh, R. (1961). Impulses and physiological states in theoretical models of nerve membrane. Biophysical Journal, 1:445-466.
- Klaus, A., Sormann, M., and Karner, K. (2006). Segmentbased stereo matching using belief propagation and a self-adapting dissimilarity measure. In Proceedings of the 18th International Conference on Pattern Recognition, volume 3, pages 15-18, New York. IEEE Press.
- Kuhnert, L. (1986). A new optical photochemical memory device in a light-sensitive chemical active medium. Nature, 319:393-394.
- Kuhnert, L., Agladze, K. I., and Krinsky, V. I. (1989). Image processing using light-sensitive chemical waves. Nature, 337:244-247.
- Landy, M. S., Maloney, L. T., Johnston, E. B., and Young, M. (1995). Measurement and modeling of depth cue combination: in defense of weak fusion. Vision Research, 35(3):389-412.
- Marr, D. and Poggio, T. (1979). A computational theory of human stereo vision. Proceedings of the Royal Society of London. Series B, Biological Sciences, 204(1156):301-328.
- Nagumo, J., Arimoto, S., and Yoshizawa, S. (1962). An active pulse transmission line simulating nerve axon. Proceedings of the IRE, 50(10):2061-2070.
- Nomura, A., Ichikawa, M., and Miike, H. (2009). Reactiondiffusion algorithm for stereo disparity detection. Machine Vision and Applications. DOI:10.1007/s00138- 007-0117-8 (in press).
- Nomura, A., Ichikawa, M., Miike, H., Ebihara, M., Mahara, H., and Sakurai, T. (2003). Realizing visual functions with the reaction-diffusion mechanism. Journal of the Physical Society of Japan, 72(9):2385-2395.
- Nomura, A., Ichikawa, M., Sianipar, R. H., and Miike, H. (2008). Edge detection with reaction-diffusion equations having a local average threshold. Pattern Recognition and Image Analysis, 18(2):289-299.
- Perona, P. and Malik, J. (1990). Scale-space and edge detection using anisotropic diffusion. IEEE Transactions on Pattern Analysis and Machine Intelligence, 12(7):629-639.
- Poggio, T., Gamble, E. B., and Little, J. J. (1988). Parallel integration of vision modules. Science, 242(4877):436-440.
- Scharstein, D. and Szeliski, R. (2002). A taxonomy and evaluation of dense two-frame stereo correspondence algorithms. International Journal of Computer Vision, 47(1-3):7-42.
- Suzuki, Y., Takayama, T., Motoike, I. N., and Asai, T. (2005). A reaction-diffusion model performing stripeand spot-image restoration and its LSI implementation. Transactions of IEICE, J88-A(11):1272-1281. (in Japanese).
- Turing, A. M. (1952). The chemical basis of morphogenesis. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 237(641):37- 72.
- Ueyama, E., Yuasa, H., Hosoe, S., and Ito, M. (1998). Figure-ground separation from motion with reactiondiffusion equation - the front of the generated pattern and a subjective contour -. IEICE Transactions on Information and Systems, J81-D-II(12):2767-2778. (in Japanese).
- Zitnick, C. L. and Kanade, T. (2000). A cooperative algorithm for stereo matching and occlusion detection. IEEE Transactions on Pattern Analysis and Machine Intelligence., 22(7):675-684.
Paper Citation
in Harvard Style
Nomura A., Ichikawa M., Okada K. and Miike H. (2009). INTEGRATION OF INTENSITY EDGE INFORMATION INTO THE REACTION-DIFFUSION STEREO ALGORITHM . In Proceedings of the Fourth International Conference on Computer Vision Theory and Applications - Volume 2: VISAPP, (VISIGRAPP 2009) ISBN 978-989-8111-69-2, pages 580-586. DOI: 10.5220/0001821005800586
in Bibtex Style
@conference{visapp09,
author={Atsushi Nomura and Makoto Ichikawa and Koichi Okada and Hidetoshi Miike},
title={INTEGRATION OF INTENSITY EDGE INFORMATION INTO THE REACTION-DIFFUSION STEREO ALGORITHM},
booktitle={Proceedings of the Fourth International Conference on Computer Vision Theory and Applications - Volume 2: VISAPP, (VISIGRAPP 2009)},
year={2009},
pages={580-586},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0001821005800586},
isbn={978-989-8111-69-2},
}
in EndNote Style
TY - CONF
JO - Proceedings of the Fourth International Conference on Computer Vision Theory and Applications - Volume 2: VISAPP, (VISIGRAPP 2009)
TI - INTEGRATION OF INTENSITY EDGE INFORMATION INTO THE REACTION-DIFFUSION STEREO ALGORITHM
SN - 978-989-8111-69-2
AU - Nomura A.
AU - Ichikawa M.
AU - Okada K.
AU - Miike H.
PY - 2009
SP - 580
EP - 586
DO - 10.5220/0001821005800586