2. Capra, L., Cazzola, W., 2007a. A Reflective PN-based Approach to Dynamic Workflow
Change, Proceedings of the 9th International Symposium in Symbolic and Numeric Algo-
rithms for Scientific Computing (SYNASC’07), IEEE, Timis¸oara, Romania, pp. 533–540.
3. Capra, L., Cazzola, W., 2007b. Self-Evolving Petri Nets, Journal of Universal Computer
Science, 13, (13): 2002–2034.
4. Capra, L., Cazzola, W., 2008. Evolutionary Design through Reflective Petri Nets: an Ap-
plication to Workflow, Proceedings of the IASTED International Conference on Software
Engineering (SE’08), Innsbruck, Aut.
5. Chiola, G., Dutheillet, C., Franceschinis, G., Haddad, S., 1993. Stochastic Well-Formed
Coloured Nets for Symmetric Modelling Applications, IEEE Transactions on Computers,
42, (11): 1343–1360.
6. Chiola, G., Dutheillet, C., Franceschinis, G., Haddad, S., 1997. A Symbolic Reachability
Graph for Coloured Petri Nets, Theoretical Computer Science B (Logic, Semantics and The-
ory of Programming), 176, (1& 2): 39–65.
7. Chiola, G., Franceschinis, G., Gaeta, R., Ribaudo, M., 1995. GreatSPN 1.7: GRaphical
Editor and Analyzer for Timed and Stochastic Petri Nets, Performance Evaluation, 24, (1-
2): 47–68.
8. Jensen, K., Rozenberg, G. (eds), 1991. High-Level Petri Nets: Theory and Applications,
Springer-Verlag.
9. Qiu, Z.-M., Wong, Y. S., 2007˙ Dynamic Workflow Change in PDM Systems, Computers in
Industry, 58, (5): 453–463.
10. Reisig, W., 1985. Petri Nets: An Introduction, Vol. 4 of EATCS Monographs on Theoretical
Computer Science, Springer.
11. Sibertin-Blanc, C., 2001. The Hurried Philosophers, in G. Agha, F. De Cindio, G. Rozenberg
(eds), Concurrent Object-Oriented Programming and Petri Nets, Advances in Petri Nets,
LNCS 2001, Springer, pp. 536–538.
12. van der Aalst, W. M. P., Basten, T., 2002. Inheritance of Workflows: An Approach to Tackling
Problems Related to Change, Theoretical Computer Science, 270,(1-2): 125–203.
70