STUDENT RESEARCH PROJECTS IN SYSTEM DESIGN

Mark Sh. Levin

2009

Abstract

The article describes a new educational approach to support the movement from traditional educational process to research and/or engineering (design) activity in computer science/information technology, engineering, and applied mathematics.The approach was realized as faculty course for advanced senior undergraduate students(information technology).The basic educational flow is: applied problem, mathematical model, algorithm, software, computing the results, report.Twelve laboratory works support the flow above.In each work a combinatorial and/or multicriteria problem is (are) examined (e.g., multicriteria ranking, multiple choice problem, multicriteria assignment/allocation, clustering) including applied examples, algorithm(s), Matlab program(s).Thus students can obtain their skills in applied problems, models, and algorithms. In addition, each student can take into account his/her inclination, motivations, and personal goals. As a result, the student can select a part of the educational flow above to prepare a modified or new version of the part(i.e., applied problem, model, algorithm).Concurrently, students obtain a skills in composition of problems/models/algorithms to get a framework for a complex real world application. Motivated students have conducted advanced research projects and their articles were published.

References

  1. Altshuller, G. S. (1984). Creativity as an Exact Science. Gordon&Breach, London.
  2. Ayres, R. Y. (1998). Technological Forecasting and LongTime Planning. McGraw-Hill, New York.
  3. Cela, E. (1998). The Quadratic Assignment Problem. Kluwer, Dordrecht.
  4. Fishburn, P. C. (1970). Utility Theory for Decision Making. Wiley, New York.
  5. Garey, M. R. and Johnson, D. S. (1979). Computers and Intractability. The Guide to the Theory of NPCompleteness. W.H.Freeman and Company, San Francisco.
  6. Jain, A. K. (1999). Data clustering: a review. ACM Computing Surveys, 31(3):264-323.
  7. Jones, J. C. (1981). Design Methods. Wiley, New York.
  8. Keeny, R. L. and Raiffa, H. (1976). Decisions with Multiple Objectives: Preferences and Value Tradeoffs. Wiley, New York.
  9. Kelleler, H. and Pisinger, D. (2004). Knapsack Problem. Springer, Berlin.
  10. Levin, M. S. (1996). Hierarchical morphological multicriteria design of decomposable systems. Concurrent Eng.: Res. and Appl., 4(2):111-117.
  11. Levin, M. S. (1998). Combinatorial Engineering of Decomposable Systems. Kluwer, Dordrecht.
  12. Levin, M. S. (2001). System synthesis with morphological clique problem: fusion of subsystem evaluation decisions. Information Fusion, 2(3):225-237.
  13. Levin, M. S. (2002). Towards combinatorial planning of human-computer systems. Appl. Intell., 16(3):235- 247.
  14. Levin, M. S. (2005). Modular system synthesis: example for composite packaged software. IEEE Trans. on SMC - Part C, 35(4):544-553.
  15. Levin, M. S. (2006a). Springer, New York.
  16. Levin, M. S. (2006b). Course 'system design: structural approach. In 18th Int. Conf. Design Methodology and Theory DTM2006, DETC2006-99547.
  17. Levin, M. S. (2007a). Combinatorial technological systems models (examples for communication system). In 2nd Int. Conf. ICSEM'07.
  18. Levin, M. S. (2007b). Towards hierarchical clustering. In CSR 2007, LNCS 4649. Springer.
  19. Levin, M. S. (2007c). Towards teaching of system design. Inform. Technol.&Comput. Syst., 2:89-94 (in Russian).
  20. Levin, M. S. (2008). Morphological approach to electronic shopping. In IEEE Reg. 8 Int. Conf. Sibircon-2008. IEEE.
  21. Levin, M. S. (2009). Combinatorial problems in system configuration design. Autom. and Remote Control, 70(3).
  22. Levin, M. S. and Danieli, M. A. (2005). Hierarchical decision making framework for evaluation and improvement of composite systems. Informatica, 16(2):213- 240.
  23. Levin, M. S. and Fimin, A. V. (2007). Hierarchical design of fire alarm wireless sensor element. In 7th Int. Conf. CAD/CAM/PDM-2007. Inst. of Control Problems.
  24. Levin, M. S. and Firer, M. (2005). Hierarchical morphological design of immunoassay technology. Computers in Biology & Medicine, 35(3):229-245.
  25. Levin, M. S. and Khodakovskii, I. A. (2007). Structural design of the telemetry system. Autom. and Remote Control, 68(9):1654-1661.
  26. Levin, M. S. and Last, M. (2006). Design of test inputs and their sequences in multi-function system testing. Appl. Intell., 25(1):105-124.
  27. Levin, M. S. and Leus, A. V. (2007). Modular design of integrated security system. In Int. Workshop DCCN 2007, volume 2. Inst. for Inform. Transmission Problems.
  28. Levin, M. S. and Merzlyakov, A. O. (2008). Composite combinatorial scheme of test planning (example for microprocessor systems). In IEEE Reg. 8 Int. Conf. Sibircon-2008. IEEE.
  29. Levin, M. S. and Nisnevich, M. L. (2001). Combinatorial scheme for management of life cycle: example for concrete macrotechnology. Intell. Manuf., 12(4):393- 401.
  30. Levin, M. S. and Ryabov, V. A. (2007). Morphological tree model for communication protocol (example). In 7th Int. Conf. CAD/CAM/PDM-2007. Inst. of Control Problems.
  31. Levin, M. S. and Safonov, A. (2006). Design and redesign of configuration for facility in communication network. Inform. Technol.&Comput. Syst., 4:63-73 (in Russian).
  32. Levin, M. S. and Sokolova, L. (2004). Modular system synthesis: example for composite packaged software. Computer Meth. & Progr. in Biomedicine, 73(1):3-11.
  33. Levin, M. S. and Vishnitskiy, R. O. (2007). Towards morphological design of gsm network. Inform. Processes, 7(2):182-189.
  34. Martello, S. and Toth, P. (1900). Knapsack Problem: Algorithms and Computer Implementation. Wiley, San New York.
  35. Nilsson, N. J. (1971). Problem Solving Methods in Artificial Intelligence. McGraw-Hill, New York.
  36. Poladian, V. (2006). Task-based adaptation for ubiquitous computing. IEEE Trans. on SMC - Part C, 36(3):328- 340.
  37. Ritchey, T. (2006). Problem structuring using computeraided morphological analysis. J. of the ORS, 57(7):792-801.
  38. Roy, B. (1996). Multicriteria Methodology for Decision Aiding. KLuwer, Dordrecht.
  39. Saaty, T. L. (1998). The Analytic Hierarchy Process. McGraw-Hill, New York.
  40. Sage, A. P., editor (1979). Systems Engineering: Methodology and Applications. IEEE Press, New York.
  41. Steuer, R. L. (1986). Multiple Criteria Optimization: Theory, Computation, and Application. WIley, New York.
  42. Zwicky, F. (1969). Discovery Invention, Research Through the Morphological Approach. McMillan, New York.
Download


Paper Citation


in Harvard Style

Sh. Levin M. (2009). STUDENT RESEARCH PROJECTS IN SYSTEM DESIGN . In Proceedings of the First International Conference on Computer Supported Education - Volume 2: CSEDU, ISBN 978-989-8111-82-1, pages 67-72. DOI: 10.5220/0001974400670072


in Bibtex Style

@conference{csedu09,
author={Mark Sh. Levin},
title={STUDENT RESEARCH PROJECTS IN SYSTEM DESIGN},
booktitle={Proceedings of the First International Conference on Computer Supported Education - Volume 2: CSEDU,},
year={2009},
pages={67-72},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0001974400670072},
isbn={978-989-8111-82-1},
}


in EndNote Style

TY - CONF
JO - Proceedings of the First International Conference on Computer Supported Education - Volume 2: CSEDU,
TI - STUDENT RESEARCH PROJECTS IN SYSTEM DESIGN
SN - 978-989-8111-82-1
AU - Sh. Levin M.
PY - 2009
SP - 67
EP - 72
DO - 10.5220/0001974400670072