DECISION SUPPORT SYSTEM FOR CLASSIFICATION OF NATURAL RISK IN MARITIME CONSTRUCTION

Marco Antonio García Tamargo, Alfredo S. Alguero García, Víctor Castro Amigo, Amelia Bilbao Terol, Andrés Alonso Quintanilla

2009

Abstract

The objective of this paper is the prevention of workplace hazards in maritime works – ports, drilling and others – that may arise from the natural surroundings: tides, wind, visibility, rain and so on. On the basis of both historical and predicted data in certain variables, a system has been designed that uses data mining techniques to provide prior decision-making support as to whether to execute given work on a particular day. The system also yields a numerical evaluation of the risk of performing the activity according to the additional circumstances affecting it: the number of workers and the machinery involved, the estimated monetary cost of an accident and so on.

References

  1. Cortés, C., Vapnik, V., 1995. Support Vector Networks. In Machine Learning, 20: 237-297.
  2. Cristianini, N., Shawe-Taylor, J., 2004. An Introduction to Support Vector Machines and other kernel-based learning methods. Cambridge University Press 2004, 2st edition.
  3. FCCC, Fomento de Construcciones y Contratas, Construcción 2007. Metodología de Trabajo de Control del Oleaje. Informe técnico interno, Laredo Spain.
  4. Inst. Seguridad e Higiene en el Trabajo, 2003. Guía Técnica, para la Evaluación y Prevención de los Riesgos Relativos a las Obras de Construcción. 2003. Madrid, Spain.
  5. Jaudet, M., Iqbal, N., Hussain A., Sharif, K., 2005. Temporal Classification for Fault-prediction in a realworld Telecommunications Network. In ICET 2005, IEEE-2005 International Conference on Emerging Technologies.
  6. Quinlan, J.R., 1993. Programs for Machine Learning. Morgan Kaufmann Publishers, San Mateo, California USA.
  7. Ríos Insua, S., Bielza Lozoya, C., 2002. Mateos Caballero, A. Fundamentos de los Sistemas de Ayuda a la Decisión. Editorial Ra-Ma, Madrid.
  8. Witten, I.H., Frank, E., 2005. Data Mining. Practical Machine Learning Tools and Techniques. Elsevier, Morgan Kaufman Publishers, San Francisco, USA, 2nd edition.
Download


Paper Citation


in Harvard Style

Antonio García Tamargo M., S. Alguero García A., Castro Amigo V., Bilbao Terol A. and Alonso Quintanilla A. (2009). DECISION SUPPORT SYSTEM FOR CLASSIFICATION OF NATURAL RISK IN MARITIME CONSTRUCTION . In Proceedings of the 11th International Conference on Enterprise Information Systems - Volume 2: ICEIS, ISBN 978-989-8111-85-2, pages 138-143. DOI: 10.5220/0001983201380143


in Bibtex Style

@conference{iceis09,
author={Marco Antonio García Tamargo and Alfredo S. Alguero García and Víctor Castro Amigo and Amelia Bilbao Terol and Andrés Alonso Quintanilla},
title={DECISION SUPPORT SYSTEM FOR CLASSIFICATION OF NATURAL RISK IN MARITIME CONSTRUCTION},
booktitle={Proceedings of the 11th International Conference on Enterprise Information Systems - Volume 2: ICEIS,},
year={2009},
pages={138-143},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0001983201380143},
isbn={978-989-8111-85-2},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 11th International Conference on Enterprise Information Systems - Volume 2: ICEIS,
TI - DECISION SUPPORT SYSTEM FOR CLASSIFICATION OF NATURAL RISK IN MARITIME CONSTRUCTION
SN - 978-989-8111-85-2
AU - Antonio García Tamargo M.
AU - S. Alguero García A.
AU - Castro Amigo V.
AU - Bilbao Terol A.
AU - Alonso Quintanilla A.
PY - 2009
SP - 138
EP - 143
DO - 10.5220/0001983201380143