IDENTIYING HOMOGENOUS CUSTOMER SEGMENTS FOR LOW RISK EMAIL MARKETING EXPERIMENTS

George Sammour, Benoît Depaire, Koen Vanhoof, Geert Wets

2009

Abstract

Research in email marketing is divided into two broad areas spam and improving response rate. In this paper we propose a methodology which allows companies to experiment with their email campaigns to increase the campaigns’ response rate, This methodology is particularly suited for companies that are reluctant to experiment with their customer’s data fearing a drop of the response rate due to unsuccessful changes of the email campaign. The goals of this research have been achieved in two steps. Firstly, homogenous groups of customers are identified, eliminating largely any hindering heterogeneity. Secondly, customers that are not clicking and/or having a low click rate within their homogenous groups are identified.

References

  1. Ansari Asim, Mela Carl F. E-customization. J Mark Res 2003;40(2):131-46.
  2. Arabie, P., Hubert, L.J., 1994. Cluster Analysis in Marketing Research. In Advanced Methods of Marketing Research, R.P. Bagozzi ed. Oxford: Blackwell, 160-189.
  3. Everitt B., Landau, S., Leese, M., 2001. Cluster Analysis. Arnold. 22
  4. Fayyad, U.M, Piatetsky-Shapiro, G., Smyth, P., Uthurusamy, R. (Eds.), Advances in Knowledge Discovery and Data Mining. AAA1 Press/The MIT Press, pp 1-34.
  5. Fraley, C., Raftery, A.E., 2002. Model-based clustering, Discriminant Analysis, and Density Estimation. Journal of the American Statistical Association 97 (458), 611-631.
  6. Godin, S. (1999). Permission marketing: Turning strangers into friends and friends into customers. New York: Simon Schuster.
  7. Godin, Seth (2000), “Permission Marketing,” Credit Union Executive, 41 (January), 42.
  8. Goldman Eric.ACoasean analysis of marketing.Wis Law Rev 2006;6(4):1152-221.
  9. Goodman Joshua, Heckerman David, Rounthwaite Robert. Stopping spam. Sci Am 2005;292(4):42-5.
  10. Gratton E. Dealing with unsolicited commercial emails: a global perspective. J Int Law 2004;7(12):3-13.
  11. Green, P.E., 2004. Practice makes perfect. Marketing Research 16 (2), 8-14.
  12. Han, Y., Hu, C., Bal, B., & Jang, S. (2005). Marketing hospitality and tourism education on the Internet: An analysis of e-relationship marketing features. Journal of Hospitality and Tourism Education, 17(1), 11-22.
  13. Hair J. F. Jr., Anderson, R.E., Tatham, R.I., Black, W.C., 1998, Multivariate Data Analysis, Prentice Hall.
  14. Jiang, D., Tang, C., Zhang, A., 2004. Cluster analysis for gene expression data: a survey. IEEE Transactions on Knowledge and Data Engineering 16 (11), 1370-1386.
  15. J. Ross Quinlan , 1992, C4.5 programs for machine learning, Morgan Kaufmann Publishers, ISBN: 1- 55860-238-0.
  16. Hartigan, J., 1975. Clustering Algorithms. Wiley.
  17. Kent, R., & Brandal, H. (2003). Improving email response in a permission marketing context. International Journal of Market Research, 45(4), 489-503.
  18. Krishnamurthy, S. (2001). A comprehensive analysis of permission marketing. Journal of Computer Mediated Communication, 6(2) available at: /www.ascusc.org/jcmc/vol6/krishnamurthy.htmlS.
  19. MacPherson, K. (2001). Permission based email marketing that works!. London: Dearborn Trade.
  20. McCloskeyW. 2006 retail white paper. New York, NY: Email Data Source; 2006.
  21. Moustaki, I., Papageorgiou, I., 2005. Latent class models for mixed variables with applications in Archaeometry. Computational Statistics and Data Analysis 48 (3), 659-675.
  22. Rust RT, Espinoza F. How technology advances influence business research and marketing strategy. J Bus Res 2006;59:1072-8.
  23. Seddon, J. (2000) 'From "push" to "pull" — Changing the paradigm for customer relationship management', Journal of Interactive Marketing, Vol 2, No. 1, pp. 19–28
  24. management', Journal of Interactive Marketing, Vol 2, No. 1, pp. 19-28
  25. Simonson, I. (2005). Determinants of customers' responses to customized offers: Conceptual framework and research propositions. Journal of Marketing, 69, 32-45.
  26. Stewart, David W. and Paul A. Pavlou (2002), “From Consumer Response to Active Consumer: Measuring the Effectiveness of Interactive Media,” Journal of the Academy of Marketing Science, 30 (Fall), 376-396.
  27. Walrave, M. (2004). Met uw Permissie: E-mailmarketing en de opt-in regel. Antwerpen: De Boeck nv.
  28. Vermunt, J.K., Magidson, J., 2005. Technical Guide for Latent GOLD 4.0: Basic and Advanced. Belmont Massachusetts: Statistical Innovations Inc.
Download


Paper Citation


in Harvard Style

Sammour G., Depaire B., Vanhoof K. and Wets G. (2009). IDENTIYING HOMOGENOUS CUSTOMER SEGMENTS FOR LOW RISK EMAIL MARKETING EXPERIMENTS . In Proceedings of the 11th International Conference on Enterprise Information Systems - Volume 4: ICEIS, ISBN 978-989-8111-87-6, pages 89-94. DOI: 10.5220/0001987200890094


in Bibtex Style

@conference{iceis09,
author={George Sammour and Benoît Depaire and Koen Vanhoof and Geert Wets},
title={IDENTIYING HOMOGENOUS CUSTOMER SEGMENTS FOR LOW RISK EMAIL MARKETING EXPERIMENTS},
booktitle={Proceedings of the 11th International Conference on Enterprise Information Systems - Volume 4: ICEIS,},
year={2009},
pages={89-94},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0001987200890094},
isbn={978-989-8111-87-6},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 11th International Conference on Enterprise Information Systems - Volume 4: ICEIS,
TI - IDENTIYING HOMOGENOUS CUSTOMER SEGMENTS FOR LOW RISK EMAIL MARKETING EXPERIMENTS
SN - 978-989-8111-87-6
AU - Sammour G.
AU - Depaire B.
AU - Vanhoof K.
AU - Wets G.
PY - 2009
SP - 89
EP - 94
DO - 10.5220/0001987200890094