
EFFICIENT DATA STRUCTURES FOR LOCAL
INCONSISTENCY DETECTION IN FIREWALL ACL UPDATES

S. Pozo, R. M. Gasca and F. de la Rosa T.
Department of Computer Languages and Systems, Computer Engineering College, University of Seville

Avda. Reina Mercedes S/N, 41012 Sevilla, Spain

Keywords: Diagnosis, Consistency, Conflict, Anomaly, Firewall, ACL, Ruleset, Update.

Abstract: Filtering is a very important issue in next generation networks. These networks consist of a relatively high
number of resource constrained devices and have special features, such as management of frequent topology
changes. At each topology change, the access control policy of all nodes of the network must be
automatically modified. In order to manage these access control requirements, Firewalls have been proposed
by several researchers. However, many of the problems of traditional firewalls are aggravated due to these
networks particularities, as is the case of ACL consistency. A firewall ACL with inconsistencies implies in
general design errors, and indicates that the firewall is accepting traffic that should be denied or vice versa.
This can result in severe problems such as unwanted accesses to services, denial of service, overflows, etc.
Detecting inconsistencies is of extreme importance in the context of highly sensitive applications (e.g.
health care). We propose a local inconsistency detection algorithm and data structures to prevent automatic
rule updates that can cause inconsistencies. The proposal has very low computational complexity as both
theoretical and experimental results will show, and thus can be used in real time environments.

1 INTRODUCTION

A wireless ad hoc network is a collection of
autonomous nodes that communicate with each
other by forming a multihop network and
maintaining connectivity in a decentralized manner.
The network topology is in general dynamic.

In these networks, before and after the
authentication step, there are attacks that can be
performed with the aim of degrading network
performance. In traditional networks, layer 3
firewalls reduce the impact of these attacks
However, the firewall concept must be adapted
(Fantacci, 2008): filtering must be implemented at
each node of the network.

An Access Control List (ACL) is an ordered list
of condition/action rules. The condition part of the
rule is a set of condition attributes or selectors. In
layer 3 firewall domain, the condition set is typically
composed of five elements, which correspond to five
fields of a packet header (Taylor, 2003). In this
paper, we are interested in consistency problems in
next generation networks (Al-Shaer, 2004) (Pozo2,

2008). Due to real-time frequent ACL updates,
inconsistencies must be detected and automatically
managed very fast.

This paper focuses in the design of specialized
data structures and an algorithm to efficiently solve
this problem. The algorithm is capable of handling
full ranges in rule selectors without doing rule
decorrelation, range to prefix conversion, or any
other pre-process. Results are returned over the
original, unmodified ACL. To the best of our
knowledge, there are only two algorithms that do not
decompose the ACL: the trivial one (which is worst
case O(f2) time complexity); and a modification over
it (Pozo3, 2008), which only improves the average
and best cases.

The paper is structured as follows. In section 2,
we briefly analyze the internals of the consistency
management problem in firewall ACLs. In section 3
we explain the methodology followed to solve the
problem. In section 4, we give experimental results
with real ACLs. In section 5 we review related
works. Concluding remarks are given in section 6.

176 Pozo S., M. Gasca R. and de la Rosa T. F. (2009).
EFFICIENT DATA STRUCTURES FOR LOCAL INCONSISTENCY DETECTION IN FIREWALL ACL UPDATES.
In Proceedings of the 11th International Conference on Enterprise Information Systems - Information Systems Analysis and Specification, pages
176-181
DOI: 10.5220/0001996001760181
Copyright c© SciTePress

Table 1: Example ACL.

Priority/ID Protocol Source IP Src Port Destination IP Dst Port Action
R0 tcp 192.168.1.5 any *.*.*.* 80 deny
R1 tcp 192.168.1.* any *.*.*.* 80 allow
R2 tcp *.*.*.* any 172.0.1.10 80 allow
R3 tcp 192.168.1.* any 172.0.1.10 80 deny
R4 tcp 192.168.1.60 any *.*.*.* 21 deny
R5 tcp 192.168.1.* any *.*.*.* 21 allow
R6 tcp 192.168.1.* any 172.0.1.10 21 allow
R7 tcp *.*.*.* any *.*.*.* any deny
R8 udp 192.168.1.* any 172.0.1.10 53 allow
R9 udp *.*.*.* any 172.0.1.10 53 allow
R10 udp 192.168.2.* any 172.0.2.* any allow
R11 udp *.*.*.* any *.*.*.* any deny

2 CONSISTENCY

MANAGEMENT IN FIREWALL
ACL UPDATES

Let ACLf be a layer 3 firewall ACL consisting of f
rules, { }1 , ... ffACL R R= . Consider

, , ,1 ,fjR ACL H Action H Z j f∈ =< > ⊆ ≤ ≤

Z protocol srcIP srcPrt dstIP dstPrt= × × × × as a

rule, where { },Action allow deny= is its action. A
selector of a firewall rule Rj is defined as

[], ,1jR k k H j f∈ ≤ ≤ , Some of these selectors can
be expressed as naturals, and others as both naturals
and intervals of naturals (an analysis of the
supported syntaxes for firewall selectors is also
available (Pozo1, 2008)). Firewall ACLs can be
trivially divided in two disjoint sets, one composed
of rules with allow action (ACLallow with size m),
and the other with deny action rules (ACLdeny with
size n), with f allow denyACL ACL ACL= ∪ . In real-life
firewall ACLs, m<<n or vice-versa. An example
ACL is presented in Table 1.

Definition 1. Inconsistency between two rules.
Two rules ,i j fR R ACL∈ are inconsistent if and
only if the intersection of each of all of their k
selectors ,k H H Z∈ ⊆ is not empty, and they have
different actions, independently of their priorities.
The inconsistency is considered to be a fault if an
administrator identifies the behaviour of the
executed ACL as being causing undesirable effects
(or having errors).

There are three basic update operations:
insertion, removal or modification of one or more

rules. These operations need an analysis in order to
know if they can cause an inconsistency. This
analysis has been provided in other works (Al-Shaer,
2004) (Pozo3, 2008). It is assumed in the paper that
a collection of these operations over an ACL is
always executed in sequence. It is also assumed that
the initial node rule set (if any) is consistent.

3 INCONSISTENCY DETECTION
PROCESS

The process is based on divide and conquer
algorithm. We depart from the trivial ACLf
decomposition in ACLallow and ACLdeny. For the rest
of the section and in order to simplify explanations,
it is assumed that n<<m and that Rd (a rule that is
going to be inserted in the node ACL) has deny
action. If Rd has allow action and/or n>>m,
explanations are analogous. The proposed algorithm
returns all rules in ACLallow that are inconsistent with
Rd, during an update operation.

Figure 1: Proposed inconsistency detection process
(considering updates).

One of the main ideas of our approach is to use a
specialized abstract data type (ADT) to store the set

EFFICIENT DATA STRUCTURES FOR LOCAL INCONSISTENCY DETECTION IN FIREWALL ACL UPDATES

177

of all selectors of the same type in ACLallow (i.e. one
ADT to store protocols used in all rules, two ADTs
to store the source and destination IPs used in all
rules, and another two ADTs to store source and
destination ports). In fact, a duplicate of these ADTs
is necessary in order to store ACLdeny selectors (if Rd
has allow action), but as we have noted before, the
process is analogous. Process is depicted in Fig. 1.

Three main operations are needed in these
ADTs: search, insert, remove. The three operations
must be fast enough, since all of them are used for
any of the three ACL update operations. ADT
population is done before deployment (off-line).

3.1 ADT for Protocol Number Selector

Attending to the exhaustive analysis of real firewall
languages presented in another work (Pozo1, 2008)
the protocol selector only admit 8-bit natural
numbers and the wildcard, *. Although symbolic
names are also possible, they can be converted to
naturals using IANA protocol numbers (RFC5237).
An important fact is that no ranges are allowed in
the syntax of the selector, and thus search is a trivial
operation for the ADT: to find a non-empty
intersection with a protocol number (the one of Rd)
there are only two possible valid values in the ADT:
‘*’ (and thus Rd intersects with all rules of the ADT,
that is all rules in ACLallow); or exactly the same
value.

To store the association <Protocol number, Rule
ID> we propose to use a hash table with perfect and
minimal hash function with protocol as the key, and
the rule IDs as value. Hash tables (Cormen, 2001)
have O(1) (constant) time complexity for insertions,
removals, updates and search operations if a perfect
hash function is used.

However, hash tables do not allow duplicate
keys to be inserted. This issue is resolved by
grouping all rules that share the same protocol
number (the same key). In this case, the associated
value to the key is a set containing the rule IDs of all
rules that have the key value as the vale of their
protocol selector. However, as removal of values
could be inefficient in this way (a hash lookup plus a
search in the list of rule IDs), the list is replaced by a
fixed-size bit set of size m (the size of ACLallow).
Each position of the bit set represents one of the m
rules in ACLallow.

3.2 ADT for Port Number Selectors

Port selectors admit 16-bit natural numbers, double-
ended closed natural intervals, and ‘*’ (Pozo1,
2008).

There are two well-known 2D problems in
computational geometry that solve similar searches:
first, given a set of data points (port numbers) and a
query rectangle (port interval), give all the points
that are inside the rectangle (this is the orthogonal
range search problem); second, given a set of
(possibly intersecting) data rectangles (port
intervals) and a query point (port number), give all
rectangles that intersect the query point (this is the
stabbing problem). These two 2D problems can be
reformulated into 1D space, where rectangles are
intervals and points are only represented by one
coordinate. In 1D, these problems are called 1D
range search problem (Cormen, 2001) and
overlapping interval search problem (Edelsbrunner,
1983), respectively. Fortunately, specialized data
structures for 1D and 2D problems that give optimal
bounds (in time and space) solutions to these two
problems exist. In the particular case of 1D, the
Interval Tree (Edelsbrunner, 1983) (Cormen, 2001),
or ITree, is the selected ADT because it has optimal
bound for the 1D problem (in time and space).

Fortunately, our port number and interval search
problems can trivially be reformulated to range
search and overlapping interval search problems, as
port numbers can be represented as points in a 1D
plane, and port intervals can be presented as lines in
the same 1D plane.
Space complexity is linear with the number of rules
in ACLallow, m. However, in our implementation
duplicate intervals or points are not allowed, and
thus space complexity is reduced in a constant
factor. Update time is in O(logm). Query time is in
O(logm + L), where L is the number of returned
results (a constant factor). Thus, instantiation is in
worst case O(m*logm), one insertion for each rule in
ACLallow.More details are available in (Edelsbrunner,
1983) (Cormen, 2001).

The result of the search operation over the ITree
with a port number or interval of the rule Rd, is the
union of all bit sets associated to port values in the
ITree which intersect the given port of Rd, or a bit
set with all bits set to ‘1’ if the given port of Rd is
‘*’. Fig. 2 presents the ITree associated to Table 1
example (destination port).

3.3 ADT for IP Address Selector

IP address selectors admit 32-bit host IP addresses
plus CIDR format, and ‘*’ (Pozo1, 2008). Symbolic
names are converted to octets.

As with previous cases duplicates are not
allowed (bit sets are used again). Thus, the result of
the search operation must be a bit set with positions

ICEIS 2009 - International Conference on Enterprise Information Systems

178

set to ‘1’ for all rule IDs of ACLallow which have an
intersecting IP with the given in the rule Rd.

Figure 2: Interval tree for destination port selector of
Table 1 example.

If a comparison between this selector and the
previous ones is made, some similitude and
differences arise. On one hand, an IP is formed by
four octets, each one being an 8-bit natural; but on
the other hand, a the search operation must use the
netmask address of the IPs stored in the ADT (Let
IP1/CIDR1 and IP2/CIDR2 be two IP addresses, if
CIDRs is the shortest of the two netmasks, then the
intersection of IP1 and IP2 is not empty if
IP1&CIDRs=IP2&CIDRs.). Thus, we propose the
design of a completely new and specialized ADT to
store IP addresses. Note that valid network IP
addresses have CIDR values between 1 and 30.

The tree is formed by four levels. For each node,
255 children are possible at most (0-254). These
children values of each node (octets) are stored in a
hash table (perfect and minimal hash is possible
again). The association <Node octet, Children
octets> is called a node-value.

No repetitions of node-values are allowed in an
IP Tree, except for leaves. Leaf nodes must also
store information regarding CIDRs and rule IDs,
where the CIDR represents the CIDR of the IP
whose insertion ended in that leaf, and where each
CIDR value has an associated set of rule IDs (as a
bit set) to associate an inserted IP/CIDR to one or
more rule IDs (if there are repetitions). The <CIDR,
RuleID Bit set> pair is stored as a hash table (perfect
and minimal hash again, since there are only 30
possible CIDRs).

Insertions are done traversing the tree from top
to bottom. First, the IP/CIDR address to be inserted,
Rd, is decomposed in its four natural octets plus the
CIDR value: o1.o2.o3.o4/cidr. Then, the root node
children hash table is asked in order to know if o1 is
already in the tree. If it is, the next step is to traverse
to the second level through the found node. If not, a
new node with value o1 is inserted in the root node
children hash table. These same is done for o2, o3,

and o4. Once at the last level, if o4 has been found, a
check is launched for the CIDR data stored in the
leaf <CIDR, Rule ID Bit set> hash table using cidr
value of the IP. If cidr value is found, the bit
corresponding to the ID of the inserted IP is set to
‘1’. If not, a new CIDR value is created with its
corresponding bit set. Thus, the insertion of a new IP
consists, in the worst case, of three constant time
searches in perfect hash tables, plus a O(1) search in
a leaf perfect hash table, resulting in O(1) worst case
time complexity.

root

0 254...

0 254...

0 254...

0/
CIDR1={RuleID}

…
CIDR30={RuleID}

…

254/
CIDR1={RuleID}

…
CIDR30={RuleID}

Figure 3: IP Tree general structure.

Figure 4: IP Tree example for network IPs.

The search operation is very similar to insertion
one. Note that in order to know if two IP addresses
intersect, the application of the shortest netmask of
the two IP addresses is necessary, as has been
pointed at the beginning of the subsection. However,
the ACLallow IP Tree contains the IPs of the m rules
in ACLallow. Thus, the application of all netmasks of
the IPs in the IP Tree which are smaller than or
equal the CIDR of the given Rd IP address is
necessary (at most 30 netmasks). The result of the
application of these netmasks is a set of (at most) 30
network IPs. Now, a search operation for each of
this IPs is launched. The search operation follows
the same algorithm used for insertions, but taking
the list of rule IDs associated to the CIDR of the leaf
which coincide with the CIDR used for the search.

EFFICIENT DATA STRUCTURES FOR LOCAL INCONSISTENCY DETECTION IN FIREWALL ACL UPDATES

179

Table 2: Performance evaluation.

ACL
Size

%Deny
Rules

ACLdeny
Size

ACLallow
Size

No.
Inconsist.

Trivial
(ms)

Optimized
Trivial [8]

(ms)

Proposal
remove/search
=detection(ms)

Proposal
insert
(ms)

Proposal
update

(ms)

ADT
build
(ms)

50 28,21 11 39 37 0.23 0.19 0.05 0.1 0.15 1.41
144 30,91 34 110 108 0.66 0.58 0.07 0.14 0.21 3.94
238 66,43 95 143 231 1 0.75 0.06 0.12 0.18 6.52
450 34,73 116 334 422 2.17 1.77 0.08 0.16 0.24 14.41
900 14,8 116 784 871 5.2 4.42 0.09 0.18 0.27 31.65

2500 6,97 163 2337 3349 15.58 13.2 0.19 0.38 0.57 128.51
5000 1,98 97 4903 4903 32.6 28.28 0.34 0.68 1.02 276.75

10611 2,05 213 10398 11746 72.87 60.94 0.96 1.92 2.88 539.67

The result of the search operation over the IP Tree
with an IP address of the rule Rd, is the union of all
bit sets associated to IP addresses in the IP Tree
which intersect the given IP address of Rd (e.g. the
result of the –at most- 30 searches), or a bit set with
all bits set to ‘1’ if the given IP address of Rd is ‘*’.

The general structure of an IP Tree, as well as an
example ACL and an IP Tree of network addresses
are presented in Figures 3 and 4 respectively.

3.4 Combination of Search Results

Using the calculated worst case time complexities of
the search operations for the five selector and, by the
sum of the rule, the combined search time for five
selectors is in worst case
O(1)+2O(1)+2O(logm)=O(logm). The first factor is
the time associated to searching in a hash table, the
second is the two searches in an IP Tree, and the last
one is the two searches in an ITree.

The obtained results are five bit sets with
positions set to ‘1’ for intersecting rule IDs.
However, from the inconsistency definitions, all
selectors must overlap for a rule to be inconsistent
with other(s). Thus, the composition of this result is
somewhat trivial: the intersection of the five bit sets.

As its name indicates, a bit set is an ADT whose
main purpose is to store bit elements. The
intersection of the five bit sets is a linear time
operation with the number of rules in ACLallow, m,
which is also the size of the bit sets. However, note
that although the problem is linear, logical
operations over bit arrays are very efficient, as they
are instructions that can be executed in one machine
cycle over 128 bit registers using special multi-
register multimedia instructions. This yields a severe
problem reduction by a big constant, k=128, in time
(with no space penalty).

Thus, time complexity of the full search process
(which is equivalent for insertion), including the
combination operation, is in worst case

O(logm+m/k),n=m=f/2 O(log(f/2))+O((f/2)/k),
m/k>logm O((f/2)/k) O(f/2k), k=128.

As has also been shown, the space needed in the
process is linear with the number of rules in ACLallow
plus some bit sets (the space needed to store the bit
sets is negligible).

Note that a number of optimizations have been
introduced in order to stop the search (in shortcut) if
a zero bit set is returned from any of the search
operations, because if a selector of Rd is consistent
with the same selector of all the rules of ACLallow,
then Rd is consistent by definition, and no more
searches for the rest of selectors are needed. Thus
best and average cases time complexity are achieved
when there a lot of selector repetitions in ACLallow
(and thus ADTs are very small, reducing the time
needed for search operation in the ITree to near a
constant), when n<<m, and when Rd is consistent
(there are no combination of results), resulting in
O(logn),logn≈constant O(1).

Removals of values in the ADTs have the same
worst case time complexity than searches (minus the
combination step, O(logm)), and updates are a
removal and an insertion (or search).

4 EXPERIMENTAL RESULTS

The proposed process has been tested with real
firewall ACLs (Table 2). Experiments were
performed on a Java Sun JDK 1.6.0_10 32-bit
HotSpot VM, on a machine with AMD Geode
LX800 (500MHz) and 256Mb RAM DDR400.
Execution times are in milliseconds.

The most important fact is regarding time needed
for update. As can be seen in Table 2, the final time
for updating an ACL is much faster in our proposal
(note that search operation needs a final combine
step, and thus represents the more costly update
operation). The difference between our proposal and
the trivial or the optimized ones is dramatic. If

ICEIS 2009 - International Conference on Enterprise Information Systems

180

several update operations, op, are going to be done
over the ACL, these time results must be multiplied
by op, since they are done in sequence.

However, ADT build times are very high,
compared with time needed for update operations
(ACLallow plus ACLdeny times have been measured
here). Fortunately, ADTs can be instantiated only
once, and then be maintained. Thus, build time
should be taken as the start-up time, and needs to be
amortized. Our proposal begins to be faster than the
optimized trivial algorithm from 8-9 sequential
updates and up (for all ACL sizes). Thus, it is
possible to wait to 8-9 update operations or more
and execute them in a burst. Effectiveness of this
approach depends on ACL update frequency.

5 RELATED WORKS

Baboescu et al. (Baboescu, 2003) provide algorithms
to detect inconsistencies in router filters that are 40
times faster than O(f2) the trivial one for the general
case of k selectors per rule. They also provide
modifications to its algorithms and data structures
for rule updates. It experimentally improves other
previous works of detection algorithms. However,
they preprocess the ACL and convert selector ranges
to prefixes (Srinivasan, 1998). The range to prefix
conversion technique could need to split a range in
several prefixes and thus the final number of rules
could increase over the original ACL. This kind of
conversion could be inefficient: in the worst case, a
range covering w-bit port numbers may require 2(w-
1) prefixes (Taylor, 2003). Furthermore, results are
given over a modified ACL.

Other research woks (Al-Shaer, 2004) (Pozo2,
2008) complemented the diagnosis process with a
characterization of the faults. However, minimal
diagnosis and characterization is NP.

6 CONCLUSIONS

In this paper we have showed a divide-and-conquer
process, ADTs, and algorithms, capable of solving
the inconsistency detection problem during an ACL
update operation in worst case linear complexity
divided by a big constant. The process is O(1) in
best and average cases (no inconsistency found).
Experimental results that support our theoretical
complexity analysis have been provided.

ACKNOWLEDGEMENTS

This work has been partially funded by Spanish
Ministry of Science and Education project under
grant DPI2006-15476-C02-01, and by FEDER.

REFERENCES

Al-Shaer, E., Hamed, H. Modeling and Management of
Firewall Policies". IEEE eTransactions on Network
and Service Management (eTNSM) Vol.1, No.1, 2004.

Baboescu, F., Varguese, G. “Fast and Scalable Conflict
Detection for Packet Classifiers.” Elsevier Computers
Networks (42-6) (2003) 717-735.

Cormen, T., Leiserson, C., Rivest, R., Stein, C.
Introduction to Algorithms, McGraw-Hill, 2001.

Edelsbrunner, H. A new approach to rectangle
intersections, Part II. International Journal on
Computational Mathematics. Vol.13, pp. 221-229,
1983.

Fantacci, R., Maccari, L., Neira, P., Gasca, R. M.
“Efficient Packet Filtering in Wireless Ad Hoc
Networks”. IEEE Communications Magazine Vol.46,
No.2, 2008.

Pozo1, S., Ceballos, R., Gasca, R.M. "AFPL, An Abstract
Language Model for Firewall ACLs". 8th International
Conference on Computational Science and Its
Applications (ICCSA). Perugia, Italy. Springer-
Verlag, 2008.

Pozo2, S., Ceballos, R., Gasca, R.M. "Improving
Computational Complexity of the Inconsistency
Characterization Problem in Firewall Rule Sets".
International Conference on Security and
Cryptography (SECRYPT). Porto, Portugal. INSTICC
Press, 2008.

Pozo3, S., Ceballos, R., Gasca, R.M. "Fast Algorithms for
Local Inconsistency Detection in Firewall ACL
Updates". 1st International Workshop on
Dependability and Security in Complex and Critical
Information Systems (DEPEND). Cap Esterel, France.
IEEE Computer Society Press, 2008.

Srinivasan, V., Varguese, G, Suri, S., Waldvogel, M. “Fast
and Scalable Layer Four Switching.” Proceedings of
the ACM SIGCOMM conference on Applications,
Technologies, Architectures and Protocols for
Computer Communication, Vancouver, British
Columbia, Canada, ACM Press, 1998.

Taylor, David E. Survey and taxonomy of packet
classification techniques. ACM Computing Surveys,
Vol. 37, No. 3, 2005. Pages 238 – 275.

EFFICIENT DATA STRUCTURES FOR LOCAL INCONSISTENCY DETECTION IN FIREWALL ACL UPDATES

181

