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Abstract: Filtering is a very important issue in next generation networks. These networks consist of a relatively high 
number of resource constrained devices and have special features, such as management of frequent topology 
changes. At each topology change, the access control policy of all nodes of the network must be 
automatically modified. In order to manage these access control requirements, Firewalls have been proposed 
by several researchers. However, many of the problems of traditional firewalls are aggravated due to these 
networks particularities, as is the case of ACL consistency. A firewall ACL with inconsistencies implies in 
general design errors, and indicates that the firewall is accepting traffic that should be denied or vice versa. 
This can result in severe problems such as unwanted accesses to services, denial of service, overflows, etc. 
Detecting inconsistencies is of extreme importance in the context of highly sensitive applications (e.g. 
health care). We propose a local inconsistency detection algorithm and data structures to prevent automatic 
rule updates that can cause inconsistencies.  The proposal has very low computational complexity as both 
theoretical and experimental results will show, and thus can be used in real time environments.  

1 INTRODUCTION 

A wireless ad hoc network is a collection of 
autonomous nodes that communicate with each 
other by forming a multihop network and 
maintaining connectivity in a decentralized manner. 
The network topology is in general dynamic.  

In these networks, before and after the 
authentication step, there are attacks that can be 
performed with the aim of degrading network 
performance. In traditional networks, layer 3 
firewalls reduce the impact of these attacks 
However, the firewall concept must be adapted 
(Fantacci, 2008): filtering must be implemented at 
each node of the network. 

An Access Control List (ACL) is an ordered list 
of condition/action rules. The condition part of the 
rule is a set of condition attributes or selectors. In 
layer 3 firewall domain, the condition set is typically 
composed of five elements, which correspond to five 
fields of a packet header (Taylor, 2003). In this 
paper, we are interested in consistency problems in 
next generation networks (Al-Shaer, 2004) (Pozo2, 

2008). Due to real-time frequent ACL updates, 
inconsistencies must be detected and automatically 
managed very fast.  

This paper focuses in the design of specialized 
data structures and an algorithm to efficiently solve 
this problem. The algorithm is capable of handling 
full ranges in rule selectors without doing rule 
decorrelation, range to prefix conversion, or any 
other pre-process. Results are returned over the 
original, unmodified ACL.  To the best of our 
knowledge, there are only two algorithms that do not 
decompose the ACL: the trivial one (which is worst 
case O(f2) time complexity); and a modification over 
it (Pozo3, 2008), which only improves the average 
and best cases. 

The paper is structured as follows. In section 2, 
we briefly analyze the internals of the consistency 
management problem in firewall ACLs. In section 3 
we explain the methodology followed to solve the 
problem. In section 4, we give experimental results 
with real ACLs. In section 5 we review related 
works. Concluding remarks are given in section 6. 
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Table 1: Example ACL. 

Priority/ID Protocol Source IP Src Port Destination IP Dst Port Action 
R0 tcp 192.168.1.5 any *.*.*.* 80 deny 
R1 tcp 192.168.1.* any *.*.*.* 80 allow 
R2 tcp *.*.*.* any 172.0.1.10 80 allow 
R3 tcp 192.168.1.* any 172.0.1.10 80 deny 
R4 tcp 192.168.1.60 any *.*.*.* 21 deny 
R5 tcp 192.168.1.* any *.*.*.* 21 allow 
R6 tcp 192.168.1.* any 172.0.1.10 21 allow 
R7 tcp *.*.*.* any *.*.*.* any deny 
R8 udp 192.168.1.* any 172.0.1.10 53 allow 
R9 udp *.*.*.* any 172.0.1.10 53 allow 
R10 udp 192.168.2.* any 172.0.2.* any allow 
R11 udp *.*.*.* any *.*.*.* any deny 

 
2 CONSISTENCY 

MANAGEMENT IN FIREWALL 
ACL UPDATES 

Let ACLf be a layer 3 firewall ACL consisting of f 
rules, { }1 , ... ffACL R R= . Consider 

, , ,1 ,fjR ACL H Action H Z j f∈ =< > ⊆ ≤ ≤  

Z protocol srcIP srcPrt dstIP dstPrt= × × × ×  as a 

rule, where { },Action allow deny= is its action. A 
selector of a firewall rule Rj is defined as 

[ ], ,1jR k k H j f∈ ≤ ≤ , Some of these selectors can 
be expressed as naturals, and others as both naturals 
and intervals of naturals (an analysis of the 
supported syntaxes for firewall selectors is also 
available (Pozo1, 2008)). Firewall ACLs can be 
trivially divided in two disjoint sets, one composed 
of rules with allow action (ACLallow with size m), 
and the other with deny action rules (ACLdeny with 
size n), with  f allow denyACL ACL ACL= ∪ . In real-life 
firewall ACLs, m<<n or vice-versa.  An example 
ACL is presented in Table 1. 

Definition 1. Inconsistency between two rules. 
Two rules ,i j fR R ACL∈  are inconsistent if and 
only if the intersection of each of all of their k 
selectors ,k H H Z∈ ⊆  is not empty, and they have 
different actions, independently of their priorities. 
The inconsistency is considered to be a fault if an 
administrator identifies the behaviour of the 
executed ACL as being causing undesirable effects 
(or having errors). 

There are three basic update operations: 
insertion, removal or modification of one or more 

rules. These operations need an analysis in order to 
know if they can cause an inconsistency. This 
analysis has been provided in other works (Al-Shaer, 
2004) (Pozo3, 2008). It is assumed in the paper that 
a collection of these operations over an ACL is 
always executed in sequence. It is also assumed that 
the initial node rule set (if any) is consistent. 

3 INCONSISTENCY DETECTION 
PROCESS 

The process is based on divide and conquer 
algorithm. We depart from the trivial ACLf 
decomposition in ACLallow and ACLdeny. For the rest 
of the section and in order to simplify explanations, 
it is assumed that n<<m and that Rd (a rule that is 
going to be inserted in the node ACL) has deny 
action. If Rd has allow action and/or n>>m, 
explanations are analogous. The proposed algorithm 
returns all rules in ACLallow that are inconsistent with 
Rd, during an update operation.  

 
Figure 1: Proposed inconsistency detection process 
(considering updates). 

One of the main ideas of our approach is to use a 
specialized abstract data type (ADT) to store the set 
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of all selectors of the same type in ACLallow (i.e. one 
ADT to store protocols used in all rules, two ADTs 
to store the source and destination IPs used in all 
rules, and another two ADTs to store source and 
destination ports). In fact, a duplicate of these ADTs 
is necessary in order to store ACLdeny selectors (if Rd 
has allow action), but as we have noted before, the 
process is analogous. Process is depicted in Fig. 1. 

Three main operations are needed in these 
ADTs: search, insert, remove. The three operations 
must be fast enough, since all of them are used for 
any of the three ACL update operations. ADT 
population is done before deployment (off-line). 

3.1 ADT for Protocol Number Selector 

Attending to the exhaustive analysis of real firewall 
languages presented in another work (Pozo1, 2008) 
the protocol selector only admit 8-bit natural 
numbers and the wildcard, *. Although symbolic 
names are also possible, they can be converted to 
naturals using IANA protocol numbers (RFC5237). 
An important fact is that no ranges are allowed in 
the syntax of the selector, and thus search is a trivial 
operation for the ADT: to find a non-empty 
intersection with a protocol number (the one of Rd) 
there are only two possible valid values in the ADT: 
‘*’ (and thus Rd intersects with all rules of the ADT, 
that is all rules in ACLallow); or exactly the same 
value. 

To store the association <Protocol number, Rule 
ID> we propose to use a hash table with perfect and 
minimal hash function with protocol as the key, and 
the rule IDs as value. Hash tables (Cormen, 2001) 
have O(1) (constant) time complexity for insertions, 
removals, updates and search operations if a perfect 
hash function is used.  

However, hash tables do not allow duplicate 
keys to be inserted. This issue is resolved by 
grouping all rules that share the same protocol 
number (the same key). In this case, the associated 
value to the key is a set containing the rule IDs of all 
rules that have the key value as the vale of their 
protocol selector. However, as removal of values 
could be inefficient in this way (a hash lookup plus a 
search in the list of rule IDs), the list is replaced by a 
fixed-size bit set of size m (the size of ACLallow). 
Each position of the bit set represents one of the m 
rules in ACLallow. 

3.2 ADT for Port Number Selectors 

Port selectors admit 16-bit natural numbers, double-
ended closed natural intervals, and ‘*’ (Pozo1, 
2008). 

There are two well-known 2D problems in 
computational geometry that solve similar searches: 
first, given a set of data points (port numbers) and a 
query rectangle (port interval), give all the points 
that are inside the rectangle (this is the orthogonal 
range search problem); second, given a set of 
(possibly intersecting) data rectangles (port 
intervals) and a query point (port number), give all 
rectangles that intersect the query point (this is the 
stabbing problem). These two 2D problems can be 
reformulated into 1D space, where rectangles are 
intervals and points are only represented by one 
coordinate. In 1D, these problems are called 1D 
range search problem (Cormen, 2001) and 
overlapping interval search problem (Edelsbrunner, 
1983), respectively. Fortunately, specialized data 
structures for 1D and 2D problems that give optimal 
bounds (in time and space) solutions to these two 
problems exist. In the particular case of 1D, the 
Interval Tree (Edelsbrunner, 1983) (Cormen, 2001), 
or ITree, is the selected ADT because it has optimal 
bound for the 1D problem (in time and space). 

Fortunately, our port number and interval search 
problems can trivially be reformulated to range 
search and overlapping interval search problems, as 
port numbers can be represented as points in a 1D 
plane, and port intervals can be presented as lines in 
the same 1D plane. 
Space complexity is linear with the number of rules 
in ACLallow, m. However, in our implementation 
duplicate intervals or points are not allowed, and 
thus space complexity is reduced in a constant 
factor. Update time is in O(logm). Query time is in 
O(logm + L), where L is the number of returned 
results (a constant factor). Thus, instantiation is in 
worst case O(m*logm), one insertion for each rule in 
ACLallow.More details are available in (Edelsbrunner, 
1983) (Cormen, 2001). 

The result of the search operation over the ITree 
with a port number or interval of the rule Rd, is the 
union of all bit sets associated to port values in the 
ITree which intersect the given port of Rd, or a bit 
set with all bits set to ‘1’ if the given port of Rd is 
‘*’. Fig. 2 presents the ITree associated to Table 1 
example (destination port). 

3.3 ADT for IP Address Selector 

IP address selectors admit 32-bit host IP addresses 
plus CIDR format, and ‘*’ (Pozo1, 2008). Symbolic 
names are converted to octets.  

As with previous cases duplicates are not 
allowed (bit sets are used again). Thus, the result of 
the search operation must be a bit set with positions 
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set to ‘1’ for all rule IDs of ACLallow which have an 
intersecting IP with the given in the rule Rd. 

 
Figure 2: Interval tree for destination port selector of 
Table 1 example. 

If a comparison between this selector and the 
previous ones is made, some similitude and 
differences arise. On one hand, an IP is formed by 
four octets, each one being an 8-bit natural; but on 
the other hand, a the search operation must use the 
netmask address of the IPs stored in the ADT (Let 
IP1/CIDR1 and IP2/CIDR2 be two IP addresses, if 
CIDRs is the shortest of the two netmasks, then the 
intersection of IP1 and IP2 is not empty if 
IP1&CIDRs=IP2&CIDRs.). Thus, we propose the 
design of a completely new and specialized ADT to 
store IP addresses. Note that valid network IP 
addresses have CIDR values between 1 and 30. 

The tree is formed by four levels. For each node, 
255 children are possible at most (0-254). These 
children values of each node (octets) are stored in a 
hash table (perfect and minimal hash is possible 
again). The association <Node octet, Children 
octets> is called a node-value. 

No repetitions of node-values are allowed in an 
IP Tree, except for leaves. Leaf nodes must also 
store information regarding CIDRs and rule IDs, 
where the CIDR represents the CIDR of the IP 
whose insertion ended in that leaf, and where each 
CIDR value has an associated set of rule IDs (as a 
bit set) to associate an inserted IP/CIDR to one or 
more rule IDs (if there are repetitions). The <CIDR, 
RuleID Bit set> pair is stored as a hash table (perfect 
and minimal hash again, since there are only 30 
possible CIDRs).  

Insertions are done traversing the tree from top 
to bottom. First, the IP/CIDR address to be inserted, 
Rd, is decomposed in its four natural octets plus the 
CIDR value: o1.o2.o3.o4/cidr. Then, the root node 
children hash table is asked in order to know if o1 is 
already in the tree. If it is, the next step is to traverse 
to the second level through the found node. If not, a 
new node with value o1 is inserted in the root node 
children hash table. These same is done for o2, o3, 

and o4. Once at the last level, if o4 has been found, a 
check is launched for the CIDR data stored in the 
leaf <CIDR, Rule ID Bit set> hash table using cidr 
value of the IP. If cidr value is found, the bit 
corresponding to the ID of the inserted IP is set to 
‘1’. If not, a new CIDR value is created with its 
corresponding bit set. Thus, the insertion of a new IP 
consists, in the worst case, of three constant time 
searches in perfect hash tables, plus a O(1) search in 
a leaf perfect hash table, resulting in O(1) worst case 
time complexity.  

root

0 254...

0 254...

0 254...

0/
CIDR1={RuleID}

…
CIDR30={RuleID}

…

254/
CIDR1={RuleID}

…
CIDR30={RuleID}

 
Figure 3: IP Tree general structure. 

 
Figure 4: IP Tree example for network IPs. 

The search operation is very similar to insertion 
one. Note that in order to know if two IP addresses 
intersect, the application of the shortest netmask of 
the two IP addresses is necessary, as has been 
pointed at the beginning of the subsection. However, 
the ACLallow IP Tree contains the IPs of the m rules 
in ACLallow. Thus, the application of all netmasks of 
the IPs in the IP Tree which are smaller than or 
equal the CIDR of the given Rd IP address is 
necessary (at most 30 netmasks). The result of the 
application of these netmasks is a set of (at most) 30 
network IPs. Now, a search operation for each of 
this IPs is launched. The search operation follows 
the same algorithm used for insertions, but taking 
the list of rule IDs associated to the CIDR of the leaf 
which coincide with the CIDR used for the search. 
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Table 2: Performance evaluation. 

ACL 
Size 

%Deny 
Rules 

ACLdeny 
Size 

ACLallow 
Size 

No. 
Inconsist. 

Trivial 
(ms) 

Optimized 
Trivial [8] 

(ms) 

Proposal 
remove/search 
=detection(ms)

Proposal 
insert 
(ms) 

Proposal 
update 

(ms) 

ADT 
build 
(ms) 

50 28,21 11 39 37 0.23 0.19 0.05 0.1 0.15 1.41
144 30,91 34 110 108 0.66 0.58 0.07 0.14 0.21 3.94
238 66,43 95 143 231 1 0.75 0.06 0.12 0.18 6.52
450 34,73 116 334 422 2.17 1.77 0.08 0.16 0.24 14.41
900 14,8 116 784 871 5.2 4.42 0.09 0.18 0.27 31.65

2500 6,97 163 2337 3349 15.58 13.2 0.19 0.38 0.57 128.51
5000 1,98 97 4903 4903 32.6 28.28 0.34 0.68 1.02 276.75

10611 2,05 213 10398 11746 72.87 60.94 0.96 1.92 2.88 539.67
 

The result of the search operation over the IP Tree 
with an IP address of the rule Rd, is the union of all 
bit sets associated to IP addresses in the IP Tree 
which intersect the given IP address of Rd (e.g. the 
result of the –at most- 30 searches),  or a bit set with 
all bits set to ‘1’ if the given IP address of Rd is ‘*’. 

The general structure of an IP Tree, as well as an 
example ACL and an IP Tree of network addresses 
are presented in Figures 3 and 4 respectively. 

3.4 Combination of Search Results 

Using the calculated worst case time complexities of 
the search operations for the five selector and, by the 
sum of the rule, the combined search time for five 
selectors is in worst case 
O(1)+2O(1)+2O(logm)=O(logm). The first factor is 
the time associated to searching in a hash table, the 
second is the two searches in an IP Tree, and the last 
one is the two searches in an ITree. 

The obtained results are five bit sets with 
positions set to ‘1’ for intersecting rule IDs. 
However, from the inconsistency definitions, all 
selectors must overlap for a rule to be inconsistent 
with other(s). Thus, the composition of this result is 
somewhat trivial: the intersection of the five bit sets.  

As its name indicates, a bit set is an ADT whose 
main purpose is to store bit elements. The 
intersection of the five bit sets is a linear time 
operation with the number of rules in ACLallow, m, 
which is also the size of the bit sets. However, note 
that although the problem is linear, logical 
operations over bit arrays are very efficient, as they 
are instructions that can be executed in one machine 
cycle over 128 bit registers using special multi-
register multimedia instructions. This yields a severe 
problem reduction by a big constant, k=128, in time 
(with no space penalty). 

Thus, time complexity of the full search process 
(which is equivalent for insertion), including the 
combination operation, is in worst case 

O(logm+m/k),n=m=f/2 O(log(f/2))+O((f/2)/k), 
m/k>logm O((f/2)/k) O(f/2k), k=128. 

As has also been shown, the space needed in the 
process is linear with the number of rules in ACLallow 
plus some bit sets (the space needed to store the bit 
sets is negligible). 

Note that a number of optimizations have been 
introduced in order to stop the search (in shortcut) if 
a zero bit set is returned from any of the search 
operations, because if a selector of Rd is consistent 
with the same selector of all the rules of ACLallow, 
then Rd is consistent by definition, and no more 
searches for the rest of selectors are needed. Thus 
best and average cases time complexity are achieved 
when there a lot of selector repetitions in ACLallow 
(and thus ADTs are very small, reducing the time 
needed for search operation in the ITree to near a 
constant), when n<<m, and when Rd is consistent 
(there are no combination of results), resulting in 
O(logn),logn≈constant O(1). 

Removals of values in the ADTs have the same 
worst case time complexity than searches (minus the 
combination step, O(logm)), and updates are a 
removal and an insertion (or search). 

4 EXPERIMENTAL RESULTS 

The proposed process has been tested with real 
firewall ACLs (Table 2). Experiments were 
performed on a Java Sun JDK 1.6.0_10 32-bit 
HotSpot VM, on a machine with AMD Geode 
LX800 (500MHz) and 256Mb RAM DDR400. 
Execution times are in milliseconds. 

The most important fact is regarding time needed 
for update. As can be seen in Table 2, the final time 
for updating an ACL is much faster in our proposal 
(note that search operation needs a final combine 
step, and thus represents the more costly update 
operation). The difference between our proposal and 
the trivial or the optimized ones is dramatic. If 
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several update operations, op, are going to be done 
over the ACL, these time results must be multiplied 
by op, since they are done in sequence. 

However, ADT build times are very high, 
compared with time needed for update operations 
(ACLallow plus ACLdeny times have been measured 
here). Fortunately, ADTs can be instantiated only 
once, and then be maintained. Thus, build time 
should be taken as the start-up time, and needs to be 
amortized. Our proposal begins to be faster than the 
optimized trivial algorithm from 8-9 sequential 
updates and up (for all ACL sizes). Thus, it is 
possible to wait to 8-9 update operations or more 
and execute them in a burst. Effectiveness of this 
approach depends on ACL update frequency. 

5 RELATED WORKS 

Baboescu et al. (Baboescu, 2003) provide algorithms 
to detect inconsistencies in router filters that are 40 
times faster than O(f2) the trivial one for the general 
case of k selectors per rule. They also provide 
modifications to its algorithms and data structures 
for rule updates. It experimentally improves other 
previous works of detection algorithms. However, 
they preprocess the ACL and convert selector ranges 
to prefixes (Srinivasan, 1998). The range to prefix 
conversion technique could need to split a range in 
several prefixes and thus the final number of rules 
could increase over the original ACL. This kind of 
conversion could be inefficient: in the worst case, a 
range covering w-bit port numbers may require 2(w-
1) prefixes (Taylor, 2003). Furthermore, results are 
given over a modified ACL. 

Other research woks (Al-Shaer, 2004) (Pozo2, 
2008) complemented the diagnosis process with a 
characterization of the faults. However, minimal 
diagnosis and characterization is NP. 

6 CONCLUSIONS 

In this paper we have showed a divide-and-conquer 
process, ADTs, and algorithms, capable of solving 
the inconsistency detection problem during an ACL 
update operation in worst case linear complexity 
divided by a big constant. The process is O(1) in 
best and average cases (no inconsistency found). 
Experimental results that support our theoretical 
complexity analysis have been provided. 
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