A TARGET TRACKING ALGORITHM BASED ON ADAPTIVE MULTIPLE FEATURE FUSION

Hongpeng Yin, Yi Chai, Simon X. Yang, David K. Y. Chiu

2009

Abstract

This paper presents an online adaptive multiple feature fusion and template update mechanism for kernel-based target tracking. According to the discrimination between the object and background, measured by two-class variance ratio, the multiple features are combined by linear weighting to realize kernel-based tracking. An adaptive model-updating mechanism based on the likelihood of the features between successive frames is addressed to alleviate the mode drifts. In this paper, RGB colour features, Prewitt edge feature and local binary pattern (LBP) texture feature are employed to implement the scheme. Experiments on several video sequences show the effectiveness of the proposed method.

References

  1. Aroussi, E. and Mohamed (2008). Combining dct and lbp feature sets for efficient face recognition. In 3rd InterBar, M. and Kassam, K. (2006). Top-down facilitation of visual recognition. In Proceedings of the National Academy of Sciences, volume 103 of Proceedings of the National Academy of Sciences, pages 449-454.
  2. Barron, J. and Fleet, D. (1994). Performance of optical flow techniques. International Journal of Computer Vision, 12(1):43-77.
  3. Chang, W., Chen, C., and Jian, Y. (2008). Visual tracking in high-dimensional state space by appearance- guided particle filtering. IEEE Transactions on Image Processing, 17(7):1154-1167.
  4. Collins, R., Lipton, A., Fujiyoshi, H., and Kanade, T. (2001). Algorithms for cooperative multi-sensor surveillance. In Proceedings of the IEEE, volume 89 of Proceedings of the IEEE, pages 1456-1477.
  5. Collins, R., Liu, Y., and Leordeanu, M. (2005). Online selection of discriminative tracking features. IEEE Transactions on Pattern Analysis and Machine Intelligence, 27(10):1631-1643.
  6. Comaniciu, D. and Meer, P. (2002). Mean Shift: A Robust Approach Toward Feature Space Analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence, 24(5):603-619.
  7. Comaniciu, D., Ramesh, V., and Meer, P. (2003). Kernelbased object tracking. IEEE Transactions on Pattern Analysis and Machine Intelligence, 25(5):564-577.
  8. Dawei, L. and Qingming, H. (2007). Mean-shift blob tracking with adaptive feature selection and scale adaptation. In IEEE Conference on Image Processing, volume 3 of IEEE Conference on Image Processing, pages 369-372.
  9. Jhuang, H., Serre, T., Wolf, L., and Poggio, T. (2007). A biologically inspired system for action recognition. In IEEE 11th international conference on Computer Vision, volume 14 of IEEE 11th international conference on Computer Vision, pages 1-8.
  10. Li, Z., Tang, L., and Sanq, N. (2008). Improved mean shift algorithm for occlusion pedetrian tracking. Electronics Letters, 44:622-623.
  11. Maggio, E., Smerladi, F., and Cavallaro, A. (2007). Adaptive multifeature tracking in a particle filtering framework. IEEE transactions on Circuits and Systems for Video Technology, 12(10):1348-1359.
  12. Mattews, I., Iashikawa, T., and Baker, S. (2004). The template update problem. IEEE Transactions on Pattern Analysis and Machine Intelligence, 26(8):810-815.
  13. Ojala, T., Pietikainen, M., and Harwood, D. (1996). A comparative study of texture measures with classifcation based on feature distributions. Pattern Recognition, 29(1):51-59.
  14. Pan, J., Ho, B., and Zhang, J. Q. (2008). Robust and accurate object tracking under various types of occlusion. IEEE Transactions on Circuits and Systems for Video Technology, 12(2):223-236.
  15. Shalom, Y. and Fortmann, T. (1988). Tracking and Data Association. Academic Press, Boston.
  16. Sharifi, M., Fathy, M., and Mahmoudi, M. (2002). A classified and comparative study of edge detection algorithms. In International Conference on Information Technology: Coding and Computing, International Conference on Information Technology: Coding and Computing, pages 117-120.
  17. Stauffer, C. and Grimson, W. (1995). Learning patterns of activity using real-time tracking. IEEE Transactions on Pattern Analysis and Machine Intelligence, 17(8):814-820.
  18. T, X. and T, B. (2007). Fusing Gabor and LBP Feature Set for Kernel-Based Face Recognition, volume 4778 of Lecture Notes in Computer Science. Springer Berlin, Heidelberg.
  19. Tal, N. and Bruckstein, A. (2008). Over-parameterized variational optical flow. International Journal of Computer Vision, 76(2):205-216.
  20. Thomas, S. and Gabriel, K. (2007). A quantitative theory of immediate visiual recognition. Program on Brain Research, 167:33-56.
  21. Wang, J. and Yaqi, Y. (2008). Integrating color and shapetexture features for adaptive real-time object tracking. IEEE Transactions on Image Processing, 17(2):235- 240.
  22. Wei, H. and Xiaolin, Z. (2007). Online feature extraction and selection for object tracking. In IEEE Conference on Mechatronics and Automation, IEEE Conference on Mechatronics and Automation, pages 3497-3502.
  23. Yong, Y. and Croitoru, M. (2006). Nonlinear multiscale wavelet diffusion for speckle suppression and edge enhancement in ultrasound images. IEEE transactions on Medical Imaging, 25(3):297-311.
  24. Zhaozhen, Y., Poriki, F., and Collins, R. (2008). Likelihood map fusion for visual object tracking. In IEEE workshop on Applications of Computer Vision, IEEE workshop on Applications of Computer Vision, pages 1-7.
Download


Paper Citation


in Harvard Style

Yin H., Chai Y., Yang S. and Chiu D. (2009). A TARGET TRACKING ALGORITHM BASED ON ADAPTIVE MULTIPLE FEATURE FUSION . In Proceedings of the 6th International Conference on Informatics in Control, Automation and Robotics - Volume 3: ICINCO, ISBN 978-989-8111-99-9, pages 5-12. DOI: 10.5220/0002154300050012


in Bibtex Style

@conference{icinco09,
author={Hongpeng Yin and Yi Chai and Simon X. Yang and David K. Y. Chiu},
title={A TARGET TRACKING ALGORITHM BASED ON ADAPTIVE MULTIPLE FEATURE FUSION},
booktitle={Proceedings of the 6th International Conference on Informatics in Control, Automation and Robotics - Volume 3: ICINCO,},
year={2009},
pages={5-12},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0002154300050012},
isbn={978-989-8111-99-9},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 6th International Conference on Informatics in Control, Automation and Robotics - Volume 3: ICINCO,
TI - A TARGET TRACKING ALGORITHM BASED ON ADAPTIVE MULTIPLE FEATURE FUSION
SN - 978-989-8111-99-9
AU - Yin H.
AU - Chai Y.
AU - Yang S.
AU - Chiu D.
PY - 2009
SP - 5
EP - 12
DO - 10.5220/0002154300050012