5. A. Maier, E. N¨oth, A. Batliner, E. Nkenke, and M. Schuster, “Fully Automatic Assessment
of Speech of Children with Cleft Lip and Palate,” Informatica, vol. 30, no. 4, pp. 477–482,
2006.
6. M. Schuster, T. Haderlein, E. N¨oth, J. Lohscheller, U. Eysholdt, and F. Rosanowski, “Intel-
ligibility of laryngectomees’ substitute speech: automatic speech recognition and subjective
rating,” Eur Arch Otorhinolaryngol, vol. 263, no. 2, pp. 188–193, 2006.
7. M. Windrich, A. Maier, R. Kohler, E.N¨oth, E. Nkenke, U. Eysholdt, and M. Schuster, “Au-
tomatic Quantification of Speech Intelligibility of Adults with Oral Squamous Cell Carci-
noma,” Folia Phoniatr Logop, vol. 60, pp. 151–156, 2008.
8. K. Landerl, H. Wimmer, and E. Moser, Salzburger Lese- und Rechtschreibtest. Verfahren zur
Differentialdiagnose von St¨orungen des Lesens und des Schreibens f¨ur die 1. bis 4. Schul-
stufe, Huber, Bern, 1997.
9. F. Gallwitz, Integrated Stochastic Models for Spontaneous Speech Recognition, vol. 6 of
Studien zur Mustererkennung, Logos Verlag, Berlin (Germany), 2002.
10. G. Stemmer, Modeling Variability in Speech Recognition, vol. 19 of Studien zur Muster-
erkennung, Logos Verlag, Berlin (Germany), 2005.
11. E.G. Schukat-Talamazzini, H. Niemann, W. Eckert, T. Kuhn, and S. Rieck, “Automatic
Speech Recognition without Phonemes,” in Proc. European Conf. on Speech Communication
and Technology (Eurospeech), Berlin (Germany), 1993, vol. 1, pp. 129–132.
12. K. Riedhammer, G. Stemmer, T. Haderlein, M. Schuster, F. Rosanowski, E. N¨oth, and
A. Maier, “Towards Robust Automatic Evaluation of Pathologic Telephone Speech,” in
Proceedings of the Automatic Speech Recognition and Understanding Workshop (ASRU),
Kyoto, Japan, 2007, pp. 717–722, IEEE Computer Society Press.
13. W. Wahlster, Ed., Verbmobil: Foundations of Speech-to-Speech Translation, Springer, Berlin
(Germany), 2000.
14. G. Stemmer, C. Hacker, S. Steidl, and E. N¨oth, “Acoustic Normalization of Children’s
Speech,” in Proc. European Conf. on Speech Communication and Technology, Geneva,
Switzerland, 2003, vol. 2, pp. 1313–1316.
15. M. Gales, D. Pye, and P. Woodland, “Variance compensation within the MLLR framework
for robust speech recognition and speaker adaptation,” in Proceedings of the International
Conference on Speech Communication and Technology (Interspeech), Philadelphia, USA,
1996, vol. 3, pp. 1832–1835, ISCA.
16. A. Maier, T. Haderlein, and E. N¨oth, “Environmental Adaptation with a Small Data Set of the
Target Domain,” in 9th International Conf. on Text, Speech and Dialogue (TSD), P. Sojka,
I. Kopeˇcek, and K. Pala, Eds., Berlin, Heidelberg, New York, 2006, vol. 4188 of Lecture
Notes in Artificial Intelligence, pp. 431–437, Springer.
17. A. Fawcett, “An introduction to ROC analysis,” Pattern Recognition Letters, vol. 27, pp.
861–874, 2006.
18. Yoav Freund and Robert E. Schapire, “Experiments with a new boosting algorithm,” in
Thirteenth International Conference on Machine Learning, San Francisco, 1996, pp. 148–
156, Morgan Kaufmann.
19. C. Hacker, T. Cincarek, A. Maier, A. Heßler, and E. N¨oth, “Boosting of Prosodic and Pronun-
ciation Features to Detect Mispronunciations of Non-Native Children,” in Proceedings of the
International Conference on Acoustics, Speech, and Signal Processing (ICASSP), Hawaii,
USA, 2007, vol. 4, pp. 197–200, IEEE Computer Society Press.
27