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Abstract: This paper presents a new MIMO instantaneous blind identification algorithm based on second order 
temporal property and steepest descent method.  Second order temporal structure is reformulated in a 
particular way such that each column of the unknown mixing matrix satisfies a system of nonlinear 
multivariate homogeneous polynomial equations.  The nonlinear system is solved by steepest descent 
method.  We construct a general goal of the system and convert the nonlinear problem into an optimal 
problem.  Our algorithm allows estimating the mixing matrix for scenarios with 4 sources and 3 sensors, etc.  
Finally, simulations show its effectiveness with more accurate solutions than the algorithm with homotopy 
method. 

1 INTRODUCTION 

Multiple-input multiple-output (MIMO) 
instantaneous blind identification (MIBI) is one of 
the attractive blind signal processing (BSP) 
problems, where a number of source signals are 
mixed by an unknown MIMO instantaneous mixing 
system and only the mixed signals are available, i.e., 
both the mixing system and the original source 
signals are unknown.  The goal of MIBI is to recover 
the instantaneous MIMO mixing system from the 
observed mixtures of the source signals.  In this 
paper, we focus on developing a new algorithm to 
solve the MIBI problem by using second-order 
temporal structure and steepest descent method. 

The greater majority of the available algorithms 
is based on generalized eigenvalue decomposition or 
joint approximate diagonalization of two or more 
sensor correlation matrices for different lags and/or 
times    arranged     in    the    conventional    manner  
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(Cichocki A et al. 2002) (Hua and Tugnait 
2000)(Lindgren and Veen 1996).  An MIBI based on 
second order temporal structure (SOTS) (Laar et al. 
2008) has been proposed, which arrange the 
available sensor correlation values in a particular 
fashion that allows a different and natural 
formulation of the problem, as well as the estimation 
of the more columns than sensors. 

In this paper, we further develop the algorithm 
proposed in Laar et al. 2008 to obtain more accurate 
and robust solution with a new contrast function. 

2 MIBI MODEL 

Let us use the usual model (Laar et al. 2008) 
(Cichocki and Amari 2002) (Yingbo Hua and 
Tugnait J K 2000) (U Lindgren and van der Veen 
1996) in MIBI problem as follows 
 ( ) ( ) ( )t t t= +x As ν  (1) 

where [ ]1, , n m
m

×= ∈A a a  is an unknown 
mixing matrix with its n -dimensional array 
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response vectors ( )T

1j j nja a=a , 1, 2, ,j m= , 

( ) ( ) ( ) ( ) T
1 2, , , mt s t s t s t= ⎡ ⎤⎣ ⎦s

 
is the vector of 

source signals, ( ) ( ) ( ) T
1 , , nt t tν ν= ⎡ ⎤⎣ ⎦ν  is the 

vector of noises, and 

( ) ( ) ( ) ( ) T
1 2, , , nt x t x t x t= ⎡ ⎤⎣ ⎦x  is the vector of 

observations. 
Without knowing the source signals and the 

mixing matrix, the MIBI problem is to identify the 
mixing matrix from the observations by estimating 
A  as Â . 

The mixing matrix is identifiable in the sense of 
two indeterminacies, which are unknown 
permutation of indices of each column of the matrix 
and its unknown magnitude (Laar et al. 2008) 
(Cichocki and Amari 2002) (Yingbo Hua and 
Tugnait J K 2000) (U Lindgren and van der Veen 
1996).  Assume that each column of A satisfy the 
normalization conditions, i.e., on the unit sphere,  

  ( ) 2

1

1 0; 1,2, ,
n

j j ij
i

S a j m
=

= − = =∑a .  (2) 

To solve the MIBI problem, we define the 
following concepts Def 1~2 for the derivation of the 
algorithm, and then make the following assumptions 
AS 1~4 (Laar et al. 2008). 
Def 1 Autocorrelation function ( ), ,s iir t τ  of 

( ) ,is t i∀ ∈  at time instant t  and lag τ  is defined 
as 
  ( ) ( ) ( ), , E , ,s ii i ir t s t s t tτ τ τ− ∀ ∈⎡ ⎤⎣ ⎦ .  (3) 

Def 2 Cross-correlation function ( ), ,s ijr t τ  of 

( ) ( ), , ,i js t s t i j∀ ∈  at time instant t  and lag τ  is 
defined as 
  ( ) ( ) ( ), , E , ,s ij i jr t s t s t tτ τ τ⎡ ⎤− ∀ ∈⎣ ⎦ .  (4) 
AS 1 the source signals have zero cross-correlation 
on the noise-free region of support (ROS) Ω : 
  ( )

1 2, 1 2, 0, 1s j jr t j j mτ = ∀ ≤ ≠ ≤ .  (5) 
AS 2 the source autocorrelation functions are 
linearly independent on the noise-free ROS Ω  

  ( ),
1

, 0 0, 1, 2, ,
m

j s jj j
j

r t j mξ τ ξ
=

= ⇒ = ∀ =∑   (6) 

AS 3 the noise signals have zero auto- and cross- 
correlation functions on the noise-free ROS Ω : 
  ( )

1 2, 1 2, 0, 1 ,n j jr t j j mτ = ∀ ≤ ≤ .  (7) 
AS 4 the cross-correlation functions between the 
source and noise signals are zero on the noise-free 
ROS Ω : 

 
( ) ( ), ,, , 0,

1 ,1
s ij s jir t r t

i n j m
ν ντ τ= =

∀ ≤ ≤ ≤ ≤
.  (8) 

The procedure of our proposed algorithm 
includes two steps, that is, step 1 is that the problem 
of MIBI is formulated as the problem of solving a 
system of homogeneous polynomial equations; and 
step 2 is that steepest descent method is applied to 
solve the system of polynomial equations.  We detail 
these steps respectively in sections 3 and 4. 

3 HOMOGENEOUS 
POLYNOMIAL EQUATIONS 

In this section, we will review the algebraic structure 
of MIBI problem derived under the above 
assumptions, and some details can be referred to 
Laar et al 2008.  The correlation values of the 
observations are stacked as 
  ( ) ( ), 1 1, ,x x x N Nt tτ τ◊ ⎡ ⎤⎣ ⎦R r r ,  (9) 

where ( ) ( ) ( ), Ex N N N N Nt t tτ τ= ⊗ −⎡ ⎤⎣ ⎦r x x , and ⊗  
denotes Kronecker product.  The homogeneous 
polynomial equations of degree two are expressed as 
  ◊ =ΦA 0 .  (10) 

Here, ◊A  is the second-order Khatri-Rao 
product of A , which is defined as 

[ ]1 1 m m◊ ⊗ ⊗A a a a a , and 

( )1 2
1 2

, 1, , ; , 1, ,q i i q Q i i n
ϕ

= =
=Φ  is a matrix with 2Q n×  

dimensions where ( ) ,
1 1
2

Q n n rank ◊⎡ ⎤= + − ⎣ ⎦xR , of 

which its rows form a basis for the nonzero left null 
space ( ),x ◊Ν R .  Therefore, there are Q  equations 

about each column of A  in (10). 
Φ  can be calculated by SVD of ,x ◊R , and 

split into signal and noise subspace parts as 
T T

,x s s s ν ν ν◊ = +R U Σ V U Σ V .  The left null space of 

,x ◊R  is T
ν=Φ U . 

By eq.(10), the maximum number maxM  of 
columns that can be identified with n  sensors 
equals 

  ( ) ( )max
1 1 1
2

M n n n= + − − .  (11) 
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4 STEEPEST DESCENT METHOD 

In this section, we summarize the main ideas behind 
the so-called steepest descent method (Richard and 
Faires 2001) that provides a deterministic means for 
solving a system of nonlinear equations, and then we 
employ the steepest descent method to solve the 
equations in (10) to form our algorithm.  

We expand the expression in (10) as 

 
( )

1 2 1 2
1 2 1 2

;
; 1, ,

0;

1, , ; 1, ,

q j q i i i j i j
i i i i n

f a a

q Q j m

ϕ
≤ =

= =

= ∀ =

∑a
.,  (12) 

and then define our optimal goal function when 
combining the constraint in (2) as 

 
( ) ( ) ( )2 2 2

1

,

1, ,

Q

j q j j j
q

g f S

j m

γ
=

+

∀ =

∑a a a
.  (13) 

Here, γ  is added as a homogeneous factor, 
which is applied to make the different square items 
in (13) well-proportioned, and in our algorithm we 
set 0.1γ = .  Notice that we don’t think it as a 
penalty term for imposing the constraint for it just 
adjust the constraint in (2) and (12) to have the same 
level of function values.  To satisfy the constraint (2) 
we normalize ja in each iterative step to unit vector. 

The direction of greatest decrease in the value 
of ( )jg a  at ( )k

ja  with k -th iteration is the 

direction given by its minus gradient ( )jg−∇ a  of 

( )jg a .  The gradient is expressed as 

  ( ) ( ) ( )T
2j jg∇ =a J a F x .  (14) 

Here, ( ) ( ) ( ) ( )( )T

1 , , ,Qf f Sγ=F x x x x , and 

( )jJ a  is its Jacobian matrix.  The objective is to 

reduce ( )jg a  to its minimal value of zero, and an 

appropriate choice for ( )jg a  is 

  ( ) ( ) ( )( )1k k k
j j jgα+ = − ∇a a a ,  (15) 

where ( )( )1
0 arg min k

jg
α

α += a  is the critical point.  

We can apply any single-variable function optimal 

method to find the minimum value of ( )( )1k
jg +a  

by an appropriate choice for the value α .  In our 
algorithm, we use Newton’s forward divided-
difference interpolating polynomial, detailed in 
Richard and Faires 2001. 

We employ the initial solutions as equal 
distributed vectors in the super space of ja .  To 
guarantee that all the local minimums of the 
proposed algorithm are obtained, we can use 8 or 
more initial solutions equal distributed in the super 
space, and then find the correct solutions by 
clustering method.  For simplicity, we decide the 
four correct solutions by their minimum distances 
between each other. 

5 SIMULATIONS 

We adopt three mixtures of four speech signals the 
same example as in Laar et al. 2008.  For 
convenience, we name our algorithm as MIBI 
Steepest Descent and the algorithm in Laar et al. 
2008 as MIBI Homotopy.   

The speech signals are sampled as 8kHz, 
consist of 10,000 samples with 1,250ms length, and 
are normalized to unit variance 1sσ = .  The signal 
sequences are partitioned into five disjoint blocks 
consisting of 2000 samples, and for each block, the 
one-dimensional sensor correlation functions are 
computed for lags 1, 2, 3, 4 and 5.  Hence, in total 
for each sensor correlation functions 25 values are 
estimated and employed, i.e., the employed noise-
free ROS in the domain of block-lag pairs is given 
by 
  ( ) ( ) ( ) ( ){ }1,1 , , 1,5 , 2,1 , , 5,5Ω = , 

where the first index in each pair represents the 
block index and the second the lag index.  The 
sensor signals are obtained from (1) with 3 4×  
mixing matrix, 

0.6749 0.4082 0.8083 0.1690
0.5808 0.8165 0.1155 0.5071
0.4552 0.4082 0.5774 0.8452

−⎡ ⎤
⎢ ⎥= − −⎢ ⎥
⎢ ⎥− −⎣ ⎦

A

.

 

The noise signals are mutually statistically 
independent white Gaussian noise sequences with 
variances 2 1νσ = .  The signal-to-noise ratio (SNR) 
is -1.23dB, which is quite bad.  We set the maximum 
iterative number is 30, and stop the iteration if the 
correction of the estimated is smaller than a certain 
tolerance 10-3. 

Let iθ  be the included angle between the j -th 

column of A  and its estimate.  The estimated 
mixing matrix is 
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Figure 1: Comparisons of MIBI Steepest Descent with 
MIBI Homotopy. 

0.6542 0.4007 0.8239 0.1235
ˆ 0.5984 0.8152 0.0884 0.5343

0.4625 0.4183 0.5597 0.8362

−⎡ ⎤
⎢ ⎥= − −⎢ ⎥
⎢ ⎥− −⎣ ⎦

A , 

and the included angles are 1.6120, 0.7214, 2.0583 
and 3.0781.  We see that the estimated columns 
approximately equal the ideal ones. 

Figure 1 shows the Comparisons of MIBI 
Steepest Descent with MIBI Homotopy.  TL, TR, 
BL and BR in Figure 1 are respectively the 
estimated included angles along different running 
times between the first, second, third and fourth 
columns and their estimates.  Blue dot indicates the 
result of MIBI_SD algorithm; and Red circle 
indicates the results of MIBI_Homotopy algorithm.  
We see that in TL and BL figure, the included angles 
are almost the same with each other, but in TR and 
BR figure, the estimates by MIBI Steepest Descent 
are better than the ones by MIBI Homotopy.  
Therefore, we conclude that the algorithm with 
steepest descent has better performance than MIBI 
Homotopy. 

6 CONCLUSIONS 

In this paper, we further develop the algorithm 
proposed in Laar et al. 2008 to obtain more accurate 
and robust solution with a new contrast function in 
(13).  SOTS is considered only on a noise-free 
region of support.  We project the MIBI problem in 
(1) on the system of homogeneous polynomial 
equations in (10) of degree two.  Steepest descent 
method is used for estimating the columns of the 
mixing matrix, which is quite different from the 
algorithm in Laar et al. 2008 which applied 

homotopy method.  This MIBI method presented in 
this paper allows estimating the mixing matrix for 
several underdetermined mixing scenarios with 4 
sources and 3 sensors.  Simulations show its 
effectiveness with more accurate solutions. 
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