0 5 10
−4
−2
0
2
4
6
x (m)
y (m)
A
1
A
2
A
3
A
5
obstacle
obstacle
obstacle
A
4
Figure 6: Collision avoidance of five robots.
trajectory tracking). The fact that there is no leader
increases the security and the robustness of the mis-
sions. Simulation studies are provided in order to
show the effectiveness of the proposed approach.
Experimental testing on WifiBot is under way. In
the future, it is planned to design real time observers
to estimate the relative velocities between robots.
REFERENCES
Das, A., Fierro, R., Kumar, V., Ostrowski, J., Spetzer, J.,
and Taylor, C. (2002). A vision-based formation con-
trol framework. IEEE T. Robotic Autom., 18(5):pp.
813–825.
De-Gennaro, M. and Jadbabaie, A. (2006). Formation con-
trol for a cooperative multi-agent system using decen-
tralized navigation functions. In American Control
Conf.
Defoort, M., Floquet, T., Kokosy, A., and Perruquetti, W.
(2007). Decentralized robust control for multi-vehicle
navigation. In European Control Conf.
Defoort, M., Palos, J., Kokosy, A., Floquet, T., and Perru-
quetti, W. (2009). Performance based reactive nav-
igation for nonholonomic mobile robots. Robotica,
27(2):pp. 281–290.
Do, K., Jiang, Z., and Pan, J. (2004). A global output-
feedback controller for simultaneous tracking and sta-
bilization of unicycle-type mobile robots. IEEE T. Au-
tomat. Contr., 20(3):pp. 589–594.
Dunbar, W. and Murray, R. (2002). Model predictive con-
trol of coordinated multi-vehicle formation. In IEEE
Conf. on Decision and Control.
Dunbar, W. and Murray, R. M. (2006). Distributed receding
horizon control for multi-vehicle formation stabiliza-
tion. Automatica, 42(4):pp. 549–558.
Fiorini, P. and Shiller, Z. (1998). Motion planning in dy-
namic environments using velocity obstacles. Int. J.
Robot. Res., 17(7):pp. 760–772.
Fliess, M., Levine, J., Martin, P., and Rouchon, P. (1995).
Flatness and defect of nonlinear systems: introductory
theory and examples. Int. J. Control, 61(6):pp. 1327–
1361.
Fridman, L. and Levant, A. (2002). Higher order sliding
mode modes. Sliding mode control in Engineering,
Ed W. Perruquetti, J. P. Barbot, pages 53–101.
Huang, L. (2009). Velocity planning for a mobile robot
to track a moving target - a potential field approach.
Robot. Auton. Syst., 57(1):pp. 55–63.
Isidori, A. (1989). Nonlinear control systems. Springer,
New York, 2nd edition.
Krstic, M., Kanellakopoulos, I., and Kokotovic, P. (1995).
Nonlinear and adaptative control design. Wiley, N. Y.
Kuchar, J. and Yang, L. (2000). A review of conflict detec-
tion and resolution modeling methods. IEEE T. Intell.
Transp., 1(4):pp. 179–189.
Kuwata, Y., Richards, A., Schouwenaraars, T., and How, J.
(2006). Decentralized robust receding horizon con-
trol. In American Control Conf.
Latombe, J. (1991). Robot Motion Planning. Kluwer Aca-
demic Publishers, Norwell, MA.
Mayne, D., Rawlings, J., Rao, C., and Scokaert, P. (2000).
Constrained model predicitive control: Stability and
optimality. Automatica, 36(6):pp. 789–814.
Pallatino, L., Scordio, V., Bicchi, A., and Frazoli, E.
(2007). Decentralized cooperative policy for conflict
resolution in multivehicle systems. IEEE T. Robot.,
23(6):pp. 1170–1183.
Tomlin, C., Pappas, G., and Sastry, S. (1998). Conflict res-
olution for air traffic management: a study in mul-
tiagent hybrid systems. IEEE T. Automat. Contr.,
43(4):pp. 509–521.
Utkin, V., Guldner, J., and Shi, J. (1999). Sliding Modes
Control in Electromechanical Systems. Taylor and
Francis, New York.
A DECENTRALIZED COLLISION AVOIDANCE ALGORITHM FOR MULTI-ROBOTS NAVIGATION
51