
Risk-Aware Secure Supply Chain Master Planning
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Abstract. Supply chain master planning strives for optimally aligned produc-
tion, warehousing and transportation decisions across a multiple number of part-
ners. Its execution in practice is limited by business partners’ reluctance to share
their vital business data. Secure Multi-Party Computation can be used to make
such collaborative computations privacy-preserving by applying cryptographic
techniques. Thus, computation becomes acceptable in practice but for additional
cost of complexity depending on the protection level chosen. Because not all
data to be shared induces the same risk and demand for protection, we assess the
risk of data elements individually and then apply an appropriate protection. This
speeds up the secure computation and enables significant improvements in the
supply chain.

1 Introduction

Supply chain master planning (SCMP) strives for optimally aligned production, ware-
housing and transportation decisions across multiple partners. In practice, we can com-
monly observe a decentralized coordination mechanism (referred to as upstream plan-
ning) that usually only leads to local optima rather than to global supply chain optima
[9]. At least in theory, optimal master plans can be generated for the whole supply chain
if some planning unit has at its disposal all relevant information pertinent to the indi-
vidual partners in the supply chain. It is, however, a well known fact that companies are
typically not willing to share sensitive private data (e.g. cost and capacity data) ([17,
18]). They perceive the risk that the central planning unit or other parties misuse data
to their disadvantage in order to obtain additional benefits.
The major obstacles to centralized master planning can be removed if a mechanism
for securely and privately computing the supply master plan is in place [1]. A central
planning unit, e.g. a 4th party logistics provider (4PL), could then determine globally
optimal master plans and distribute these to the individual partners involved in the sup-
ply chain. To this end, Secure (Multi-Party) Computation (SMC) can be employed such
that the relevant data does not need to be disclosed even to central planning unit. This
offers the ultimate level of protection, since no data sharing risk remains. In this paper
we propose a framework for secure centralized supply chain master planning (SSCMP).
We introduce a basic model for centralized supply chain master planning and, from this,
derive the relevant data a central planning unit requires to optimally coordinate man-
ufacturing and transportation decisions. We then analyse this data with respect to its
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”criticality”. Criticality refers to how sensitive certain pieces of data are and how will-
ing the different partners will be to share this data. The criticality is determined by the
perceived risks associated with data sharing and its prior public knowledge. In this con-
text, risk can be characterized by the potential negative impact that occurs if a partner
misuses the data to its own benefit and the likelihood for thisto happen. We derive
an overall criticality assessment for each data element that is relevant for supply chain
master planning and use information about on the prior (public) knowledge of the data
to determine an overall criticality score. This criticality score constitutes an input to se-
cure computation of centralized supply chain master plans.We map criticality scores to
protection levels which consist of certain technologies and parameters for SMC. Lower
protection levels lead to faster SMC implementations. We propose a mixed approach to
SMC combining the different protection levels in one implementation and formulate a
new pivot selection rule in Linear Programming (LP) that optimizes the effort involved
by selecting based on the protection level. We experimentally verify the effectiveness
of the new algorithm.

2 Related Work

Numerous works in the area of supply chain management existson supply chain master
planning as well as information sharing and collaboration in supply chains. In general, it
is a well acknowledged fact that sharing relevant information and planning in a collab-
orative fashion can improve supply chain performance and mitigate the consequences
of demand variability, especially with respect to the well-known bullwhip effect (see
for example [6, 14, 16, 23]). With respect to supply chain master planning, numerous
authors have proposed multi-stage models that can be utilized to coordinate planning
activities across multiple locations and firms (e.g. [10, 13, 20]). Various authors have
stated that employing a centralized approach to master planning will lead to better re-
sults as compared to decentralized approaches that are mostcommonly employed in
industry. [21], for example, analyze the disadvantages of upstream coordination in com-
parison with centralized coordination. They compute the average gap between central-
ized and upstream coordination for several test scenarios with varying cost parameters
and demand patterns. Similar findings are reported in [18]. However, centralized supply
chain planning has not been widely adopted in industry. [12]states: ”it is difficult, or
maybe even impossible, to get a large network consisting of independent companies
to agree on and implement a centralised planning and controlsolution.” Reluctance
towards information sharing (a prerequisite for centralized master planning) has been
identified as the main obstacle that inhibits centralized master planning ([17,18]). For
this reason, alternative approaches have been developed that either build on negotiation
based coordination ([9]) or hybrid forms ([17]). So far there has been no research on
supply chain master planning based on mechanisms that privacy preserving data sharing
and computation. To the best of our knowledge the only approach to secure multi-party
computation in the area of supply chain management can be found in [1]. The authors
develop secure protocols for a Collaborative Planning, Forecasting, and Replenishment
(CPFR) process. Next to the fact that we, in our paper, consider a different problem set-
ting, a major distinction between the research presented in[1] and our research is that
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they do not consider different protection levels for different risks of data to be shared.
They follow the approach to provide the highest protection for all data using a spe-
cially developed protocol. Their protocols are two-party protocols, while we consider a
multi-party problem. We will now review related work for SMC.
SMC allows a set of n players,P = P1, . . . , Pn, to jointly compute an arbitrary func-
tion of their private inputs,f(x1, . . . , xn). The computation is privacy preserving, i.e.
nothing else is revealed to a player than what is inferable byhis private input and the
outcome of the function. A cryptographic protocol is then run between the players in
order to carry out the computation. Even if there are adversarial players, the constraints
on correctness and privacy can be proven to hold under well stated settings. These
settings consider the type of adversary as well as his computing power which can be
bounded or unbounded. An adversary can be passive, i.e. following the protocol cor-
rectly but trying to learn more or he can be active, by arbitrarily deviating. For the
two-party case it has been proven by Yao in [22], that any arbitrary function is com-
putable in privacy preserving fashion, using garbled binary circuits. This approach has
been extended to the multi-party case in [4, 11]. Alternative approaches base on secret
sharing schemes. A player’s secrets is split intom shares which are then distributed
to m players. Players can compute intermediate results on the shares, and in the end a
reconstruction is performed in order to receive the final result. Other approaches utilize
semantically secure homomorphic encryption (HE) [8], a public encryption scheme,
whereE(x) · E(y) = E(x + y) andx cannot be deduced byE(x).
Using the general approach leads to solutions that have highcomplexity and are there-
fore almost always not practically feasible [15]. Thus, in order to get a practical solu-
tion, a dedicated protocol should be constructed. Atallah et al. constructed solutions for
a couple of supply chain problems, e.g. planning, forecasting, replenishment, bench-
marking, capacity allocation and e-auctions ([1–3]). Their cryptographic protocols base
on additive secret sharing, homomorphic encryption and garbled circuits. A contribu-
tion of Atallah et al. which is closely related to ours is thatof secure linear programming
[15]. It uses the simplex method introduced by Dantzig in [7]to solve linear programs
which get expressed as a matrixD. The method consists of two steps: selecting the
pivot elementdrs and pivoting all elementsdij of D over this element. The pivot step
sets the new value ofdij , denotedd′ij , by

d′ij = 1
drs

for i = r and j = s (pivot element)

d′ij =
dij

drs
for i = r and j 6= s (pivot row)

d′ij =
−dij

drs
for i 6= r and j = s (pivot column)

d′ij =
dij−disdrj

drs
for i 6= r and j 6= s (all other elements).

The method is repeated until the optimal solution of the LP isfound (resp., it is stated
that the problem is unbounded or infeasible). As input to thecryptographic protocol,
matrix D gets additively split between both parties (i.e.,D = D(a) + D(b)). In order
to not reveal additional information (e.g. by the pivot column or row index), the matrix
gets permuted at the beginning of each iteration. Details are omitted here, but can be
found in [15]. The pivot element selection and the pivot stepare then carried out using
cryptographic tools additive splitting, homomorphic encryption and garbled circuits.
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3 Supply Chain Master Planning

In this section we first provide a basic model for centralizedsupply chain master plan-
ning. This model will be used to derive the relevant data thatpartners in the supply chain
need to share for centralized master planning. We then propose a simple approach to
assess the criticality of the individual elements.

3.1 Model for Centralized Supply Chain Master Planning

As a basis for our subsequent analysis we utilize a simple generic supply chain master
planning model presented in [18]. Although rather simple, this model is sufficient for
the illustration of our concept and can easily be extended inorder to account for further
practical requirements and restrictions.
We consider a supply chain withI stages on which different operations (e.g. manufac-
turing, warehousing, etc.) are performed. We use indexi (i = 1, . . . , I) to distinguish
the different stages. ByI + 1 we denote the final customer stage. ByKi we denote
the set of nodes on stagei. Every nodek ∈ Ki represents one production facility or
warehouse on stagei = 1, . . . , I. The final customer locations are modelled through
nodesk ∈ KI+1 on stagei = I + 1. By Ni we denote the set of products produced
on stagei and usem ∈ Ni−1 andn ∈ Ni as indices for the input and output products
of stagei. For a given supply chain, master planning determines the production and in-
ventory quantities for every node and the material flows between the nodes for a given
time period. We introduce the following additional notation to formulate a centralized
master planning model:

Master planning parameters (input)
Dn

l Demand for final finished productn ∈ NI at customer locationl ∈ KI+1

αm,n Quantity of input productm required for manufacturing one unit of output productn

βn
k Unit capacity requirement at locationk ∈ Ki for output of productn ∈ Ni

capi,k Production capacity at locationk ∈ Ki

cpn
i,k Unit production costs of productn ∈ Ni at locationk ∈ Ki

csn
i,k,l Unit shipping costs of productn ∈ Ni from locationk ∈ Ki to locationl ∈ Ki+1

chn
i,k Unit holding costs of productn ∈ Ni at locationk ∈ Ki

Master planning variables (output)
xn

i,k Production quantity of output productn ∈ Ni manufactured at locationk ∈ Ki

yn
i,k,l Shipping quantity of productn ∈ Ni shipped from locationk ∈ Ki to l ∈ Ki+1

The following deterministic, linear programming model canbe used to determine a
supply chain master plan.

Objective function

Min C =
I

∑

i=1

∑

k∈Ki

∑

n∈Ni

cp
n
i,kx

n
i,k +
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Constraints
∑

k∈KI

y
n
I,k,l = D

n
l ∀n ∈ NI , l ∈ KI+1 (2)

x
n
i,k =

∑

l∈Ki+1

y
n
i,k,l ∀n ∈ Ni, i ∈ {1, . . . , I}, k ∈ Ki (3)

∑

j∈Ki−1

y
m
i,j,k =

∑

n∈Ni

α
m,n

x
n
i,k ∀m ∈ Ni−1, i ∈ {1, . . . , I}, k ∈ Ki (4)

∑

n∈Ni

β
n
k x

n
i,k ≤ capi,k ∀i ∈ {1, . . . , I}, k ∈ Ki (5)

xn
i,k, yn

i,k,l ≥ 0 ∀n ∈ Ni, i ∈ {1, . . . , I}, k ∈ Ki (6)

The objective of the model is to minimize the total relevant costs of the SC for
fulfilling final customer demand. The objective function (1)accounts for production
costs, holding costs, and shipping costs for finished products. Constraints (2) ensure that
the final customer demand at stageI + 1 is met. (3) and (4) represent finished product
and intermediate product balance constraints. The capacity constraints (5) ensure that
the available capacity of any location will not be exceeded.Constraints (6) ensure non-
negativity of all decision variables.
The output of this model is a supply chain master plan for a single period that specifies
the production quantity for the individual products in eachnode and the shipping quan-
tities across the whole supply chain. From this basic model we can directly infer the
relevant data that needs to be shared in order to realize centralized supply chain master
planning. All parties in the supply chain need to make the above listedinput parame-
ters available to the central planning unit. After generating the supply chain master plan,
the central planning unit has to communicate the results (i.e. the values of theoutput
variables) to the corresponding partners. In typical industry settings, both the input pa-
rameters and the master planning output constitute privatedata that is only accessible to
the planning units (firms, departments) responsible for individual nodes and arcs. The
willingness to share this data will depend on the risk the individual data owners per-
ceive. The perceived risk, however, is not identical for allof the relevant data elements.
A company may, for example perceive a low risk associated with sharing forecast data,
but a high risk when revealing production cost or capacity information. While SMC can
overcome the risk of data sharing in theory with the highest protection level, in practice
such solutions can become too slow to be useful (e.g. if the computation takes longer
than what the continuous planning period is). We therefore use the result of the risk
assessment, the criticality scores, to optimize the SMC, such that each data element is
handled at its appropriate risk level. We achieve a significant performance improvement
in our experiments.

3.2 Data Criticality and Protection Levels

In this section we illustrate a simple approach to determineprotection levels for indi-
vidual data elements in the context of centralized master planning. Although it is rather
straightforward to see that the risk will differ across the individual data elements, it is
not possible to determine general criticality levels that are valid for any supply chain
setting. Whether other partners in the supply chain can use data to their benefit and to
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the disadvantage of the data owner depends on factors such asthe distribution of power
among the partners, the type of industry and product, the relative position in the supply
chain, trust among partners, etc. Production costs, for example are generally considered
as critical data that a data owner will not want to share. However, in many industries
(e.g. for commodities) production costs are known by different partners without imply-
ing a negative impact. Because a general assessment of the criticality is not likely to be
attainable, an individual assessment has to be conducted for any specific supply chain.
We propose a simple scheme to support such a criticality assessment. It is based on the
following questions that need to be answered for any one of the data elements identified
in the previous section:

1. What disadvantage may a data owner potentially incur whensharing private data?
2. What is the probability that a partner in the SC (mis-) usesthe shared data to the

disadvantage of the data owner?
3. To what extent is the data prior knowledge?

With the first two questions we capture the individual components of the risk in-
duced by sharing a certain data element. When considering the potential negative im-
pacts (question one), we have to consider that these may varydepending on the position
of the data source within the supply chain and the potential incentives other partners
in the SC may have to (mis-) use the data. We differentiate between partners who are
responsible for nodes on the same stage (competitors) and those who are responsible for
nodes on previous or subsequent stages (supplier-buyer-relationships). For each of the
aforementioned cases it is necessary to assess the likelihood of a disadvantage on the
side of the data owner, i.e. the probability that another partner in the supply chain will
actually make use of the knowledge of the data element (question 2). The risk cannot
be considered independent of the prior knowledge about the data. It is reasonable to
assume that the criticality of certain data elements is lower if the data is already acces-
sible for some or all of the partners in the supply chain. Figure 1, a) illustrates our basic
scheme for assessing the criticality of individual data elements.

Potential negative impacts
- induced by competitors:  impact   *   probability               score
- induced by suppliers: impact   *   probabil ity                   + score
- induced by buyers: impact   *   probabil ity + score

[0; 5]          [0; 5]                              [0; 25]

Overall risk assessment (Sum of individual scores):

- Public knowledge (pub): score (pub)
- Prior knowledge of specific stages (spe):     + score (spe)

[0; 5]

Prior knowledge (pk)

Prior knowledge weight:  (1- pk/10)

Criticality assessment
=  Overall risk assessment  *  prior knowledge weight:

[0; 75]

[0 ; 10]

[0; 1]

[0; 75]

Input for secure computation
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Fig. 1. a) Determination of criticality. b) Criticality levels of different types of data (example).

We propose a scoring range between zero and five to adequatelyassess by dis-
crete values the potential negative impact and the expectedprobability of data misuse.
Through multiplication of both scores, we obtain a particular risk measure for negative
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impacts induced by competitors, suppliers, or buyers. Their addition provides a mea-
sure for the overall risk. The overall risk for each data element is then weighted with a
value that expresses the prior knowledge of data. Similarly, a scoring range from zero
to five is used to measure the degree of public knowledge in general as well as specific
knowledge of individual SC partners. The sum of both scores measures the level of
prior knowledge. A score of zero indicates that the data is pertinent to the data owner,
while higher scores indicate that the data may anyways be known prior to centralized
master planning. We determine an aggregate weight for the prior knowledge as in order
to derive the overall criticality level. In Figure 1,b) we provide an example of a possible
outcome of our criticality assessment. With our assessmentscheme, a criticality score
between zero and 75 is assigned to each data element.

4 Secure Computation

4.1 Protection Levels

The data criticality analysis of section 3.2 shows that different variables in the SCMP
problem have different protection demand. The data criticality scores of the variables
range from zero to 75. We map a data criticality score toprotection levels. A protec-
tion level specifies a concrete set of SMC technologies and their parameters for pro-
tecting a variable. These technologies and parameters are:the computationalsetting
(information-theoretic, cryptographic or best-effort),the cryptographictools and the
tool parameters. Dependencies among the different parameters of a protection level are
possible, e.g. there cannot be a SMC computation that is information-theoretically se-
cure, but uses homomorphic encryption as a tool. The protection levels are arranged in
order of the effort for an attacker to infer the protected value. Higher protection levels
require more effort and add more additional complexity. Higher criticality scores map
to higher protection levels. See Table 1 as an exemplary specification for protection lev-
els which limits the available cryptographic tools to additive splitting and homomorphic
encryption. Table 1 gives concrete examples for five possible protections levels which
will be used in later experiments.

Table 1. Protection Levels for the 4PL Scenario.

Protection Setting Tools Tool Parameters
very high inf.-theo. additive split w/ modulus modulus N, number of parties
high cryptographic HE Darmgard-Jurik, key: 3072 bit
medium cryptographic HE Paillier, key: 512 bit
low best effort additive split w/o modulus
none - -

4.2 Mapping

A monotone function maps the criticality scorec to a protection levelp = f(c). We
propose a linear mapping. Other mappings are possible and may depend on the conrecte
application context. We assume the ordered protection levels to differ in their effort by
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an almost constant factor. For a first mapping we define a linear mapping functionf(c)
which maps data criticality scorec to m protection levels byf(c) = 1+⌊c ·m/(cmax+
1)⌋, wherecmax in our case is 75 as received from section 3.2. Applying this mapping
to the criticality scores of section 3.2, we receive the values of Table 2. Considering

Table 2. Linear Mapping.

Protection Level 1 2 3 4 5
Criticality Score 0-15 16-30 31-45 46-60 61-75
Number of Data 3 4 0 2 2

Table 2, nine variables get a protection level assigned below the maximum. Thus, for
nine of eleven variables computational effort can be reduced compared to the former
approach of applying maximum protection.

4.3 Pivot Rule/Intergration

We adapt the solution by Atallah et al. for secure linear programming. We introduce
an additional matrix denotedP . Every element ofP , pij , represents the protection
level of the corresponding data element inD, dij . P is available to both parties, as
well as the table with the protection level specifications. Each party may define its own
mapping function. Whenever a pivot step is performed in order to receive a new value
d′ij , the new protection level valuep′ij is set to the highest assigned protection level
value of all elements ofD involved. According to the pivot step computation rules for
processing the current elementdij the involved elements are:drs, drj , dis anddij .
The new protection level ford′ij then is received bymax(prs, prj, pis, pij). Over time,
this leads to convergence of matrixP to the highest protection values contained. We
construct a pivot selection rule which not only bases on entries ofD but also on these
of P and moreover preventsP from fast convergence. Recall that the LP is rewritten as
a matrixD. Let

D =

(

cT −z0

A b

)

wherecT denotes the vector of the objective function’s coefficients, z0 the outcome,A
the coefficients of the constraints andb the vector of the constraint values. The secure
linear programming solution originally uses a slight adaption of the Bland’s Rule [5]
as pricing scheme. The rule computes the pivot columns by min(s : cs < 0) and the
pivot row r by min(r : br/ars) for all ars > 0. Our approach keeps the part of the
Bland’s Rule for selecting the pivot column. We then replacethe part for selecting the
row. We definer for 0 ≤ r ≤ m by

r = min(
br

ars

) : min
(

m−1
∑

i=0

n−1
∑

j=0

max(prs, pis, prj, pij) − pij

)

.

Thus, every element in the selected pivot columns fulfilling the minimum ratio test best
(i.e., no row in columns with a smaller ratio exists) is checked for having the lowest
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impact on the convergence of matrixP . Although every element of matrixP is involved
in the computation for every element fulfilling the minimum ratio criteria, selecting the
pivot row can still be considered very fast, sinceP gets updated by each party locally
in the exact same manner and the single operations are less complex. Thus, even for big
m’s andn’s, the added computational overhead can be considered verysmall. In order
to have the indexes matching,P gets blinded and permuted in the same way as this is
done forD within the original protocol.P may leak little information, e.g. if there is a
unique occurrence of a protection level.

4.4 Experimental Results (Mapping, Pivot Rule)

For further examination, we set up an experiment based on theresults of section 4.3 and
the secure linear programming protocol of Atallah et al. Forexecuting the experiment
it is not necessary to actually run the cryptographic protocol, since the main part of
the protocol remains unchanged. We rather focus on the localpart, i.e. computing the
elements of the protection level matrix, and run the simplexalgorithm locally in order
to simulate pivoting to have correct pricing data available. For preparation of the exper-
iment, we implemented the simplex algorithm in Java, first. We then implemented an
instance of a realistic 4PL scenario for medical equipment (details omitted for brevity)
and derived a LP matrix from that which has 191 rows and 480 columns. Table 4 shows
the results of our experiment using the linear mapping introduced in section 4.2. We
receive the total effort by adding the number of assigned protection levels in order to
simulate an execution of the pivot part of the cryptographicprotocol. The measured
values are the number ofpivot steps, the numbers of steps untilconvergence and the
total effort.

Table 3. Experimental Results.

Bland’s Rule Modifier Bland’s Rule
Pivot Steps 140 112
Convergence Step 2 99
Total Effort 51249448 32102112

Figure 2 shows the convergence ratio during the run. The convergence ratio is de-
fined as the ratio of the sum of all entries ofP divided by the number of elements ofP
multiplied with the maximum protection level (i.e., five).

Fig. 2. Convergence Ratio.
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The modification of the Bland’s Rule led to a decrease of 20% onoverall pivot steps.
The protection level matrix was kept from convergence up to step 99 while the conver-
gence ratio quickly reached a value of 0.75. The total effortadded by the cryptographic
protocol was reduced to 63%.

5 Conclusions

We introduced a solution for Secure Supply Chain Master Planning (SSCMP) using se-
cure computation. Traditional SCMP computes the optimal production and transporta-
tion plan across a number of parties using Linear Programming. We showed that by risk
assessment and risk handling a significant performance increase in SSCMP is possible.
We derived a methodology for risk assessment, the criticality score, in supply chains
and then modify the pricing scheme of Linear Programming handling each data item at
the appropriate risk level. In an experimental study based on a realistic scenario using
this methodology we obtained a performance gain of 37%. Future work is to extend the
applicability of the method to other algorithms for linear optimization, e.g. inner point
methods, and to extend it to other supply chain optimizationproblems adapting the risk
assessment step.
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