Example 3. The correspondingdynamical system
cannot be solved directly. However, using the above
decomposition we obtain s(t) = s
1
(t) + s
2
(t) + s
3
(t),
where
s
1
(t) =1+
Z
t
0
Z
τ
1
0
u(τ
2
)dτ
2
dτ
1
+
Z
t
0
Z
τ
1
0
u(τ
2
)
Z
τ
2
0
Z
τ
3
0
u(τ
4
)dτ
4
dτ
3
dτ
2
dτ
1
+ · · ·
(44)
corresponds to the first dynamical system and is the
solution of the system
y
′
1
(t) = s
2
(t), y
1
(0) = 0,
y
′
2
(t) = u(t)s
1
(t), y
2
(0) = 1,
s
1
(t) = y
2
(t).
(45)
whereas
s
2
(t) = exp
Z
t
0
(1+ u(τ))dτ
(46)
corresponds to the second dynamical system and
s
3
(t) = 1+
Z
t
0
Z
τ
1
0
u(τ
2
)dτ
2
dτ
1
(47)
is the solution of the third system.
6 CONCLUSIONS
In this paper, we presented an approach to the prob-
lem of decomposition of rational series in noncom-
mutative variables into some simple series. The study
of the simultaneous block–diagonalization has yet to
be improved. We present an application of this de-
composition to dynamical systems.
There are numerous further applications of this
decomposition to dynamical systems and automata :
• The study of the stability of bilinear systems can
be approachedby using its generating series (Ben-
makrouha and Hespel, 2007) : in some cases, the
output can be explicitly computed or bounded.
The decomposition of this series into simple se-
ries would simplify this study in the other cases.
• In a bilinear system, the dependence or the inde-
pendenceof subsystems can be studied via the de-
composition of the generating series of the sys-
tem.
• A finite weighted automaton being another rep-
resentation of a rational series, the property of de-
composition of a rational series into simpler series
is transferred to the corresponding finite weighted
automaton. So we can define a simpler finite
weighted automaton.
REFERENCES
Benmakrouha F. and Hespel C. (2007). Generating formal
power series and stability of bilinear systems, 8th Hel-
lenic European Conference on Computer Mathemat-
ics and its Applications (HERCMA 2007).
Berstel J. and Reutenauer C. (1988). Rational series and
their languages, Springer–Verlag.
Chen K.-T. (1971). Algebras of iterated path integrals and
fundamental groups, Trans. Am. Math. Soc., 156,
359–379.
Fevotte C. and Theis F.J. (2007). Orthonormal approximate
joint block–diagonalization, technical report, Telecom
Paris.
Fliess M. (1972). Sur certaines familles de s´eries formelles,
Th`ese d’´etat, Universit´e de Paris–7.
Fliess M. (1974) Matrices de Hankel, J. Maths. Pur. Appl.,
53, 197-222.
Fliess M. (1976). Un outil alg´ebrique : les s´eries formelles
non commutatives, in “Mathematical System Theory”
(G. Marchesini and S.K. Mitter Eds.), Lecture Notes
Econom. Math. Syst., Springer Verlag, 131, 122-148.
Fliess M. (1981). Fonctionnelles causales non lin´eaires et
ind´etermin´ees non commutatives, Bull. Soc. Math.
France, 109, 3–40.
Gantmacher F.R. (1966). Th´eorie des matrices, Dunod.
Hespel C. (1998). Une ´etude des s´eries formelles non com-
mutatives pour l’Approximation et l’Identification des
syst`emes dynamiques, Th`ese d’´etat, Universit´e de
Lille–1.
Hespel C. and Martig C. (2006). Noncommutative comput-
ing and rational approximation of multivariate series,
Transgressive Computing 2006, 271-286.
Jacob G. (1980) R´ealisation des syst`emes r´eguliers (ou
bilin´eaires) et s´eries g´en´eratrices non commutatives,
S´eminaire d’Aussois, RCP567, Outils et mod`eles ma-
th´ematiques pour l’Automatique, l’Analyse des Sys-
t`emes, et le traitement du Signal.
Kaplanski I. (1969). Fields and rings, The University of
Chicago Press, Chicago.
Reutenauer C. (1980). S´eries formelles et alg`ebres syntac-
tiques, J. Algebra, 66, 448-483.
Salomaa A. and Soittola M. (1978). Automata Theoretic
aspects of Formal Power Series, Springer.
Sch¨utzenberger M.P (1961). On the definition of a family
of automata, Inform. and Control, 4, 245-270.
ICINCO 2009 - 6th International Conference on Informatics in Control, Automation and Robotics
220