2. Chen, N., Blostein, D.: A survey of document image classification: problem statement, clas-
sifier architecture and performance evaluation. Int J Doc Anal Recogn 10 (2007) 1–16
3. Journet, N., Ramel, J., Mullot, R., Eglin, V.: Document image characterization using a mul-
tiresolution analysis of the texture: application to old documents. Int J Doc Anal Recogn 11
(2008) 9–18
4. Nicolas, S., Dardenne, J., Paquet, T., Heutte, L.: Document Image Segmentation Using a 2D
Conditional Random Field Model. In: Proc Int Conf on Document Analysis and Recognition.
Volume 1. (2007) 407–411
5. Meng, G., Zheng, N., Song, Y., Zhang, Y.: Document Images Retrieval Based on Multiple
Features Combination. In: Proc Int Conf on Document Analysis and Recognition. Volume 1.
(2007) 143–147
6. Kitamoto, A., Onishi, M., Ikezaki, T., Deuff, D., Meyer, E., Sato, S., Muramatsu, T., Kamida,
R., Yamamoto, T., Ono, K.: Digital Bleaching and Content Extraction for the Digital Archive
of Rare Books. In: Proc Int Conf on Document Image Analysis for Libraries. (2006) 133–144
7. Le Bourgeois, F., Trinh, E., Allier, B., Eglin, V., Emptoz, H.: Document Images Analysis
Solutions for Digital libraries. In: Proc Int Workshop on Document Image Analysis for
Libraries. (2004) 2–24
8. Le Bourgeois, F., Emptoz, H.: DEBORA: Digital accEss to BOoks of the RenAissance. Int
J Doc Anal Recogn 9 (2007) 193–221
9. Grana, C., Borghesani, D., Cucchiara, R.: Describing Texture Directions with Von Mises
Distributions. In: Proc Int Conf on Pattern Recognition. (2008)
10. Konidaris, T., Gatos, B., Ntzios, K., Pratikakis, I., Theodoridis, S., Perantonis, S.: Keyword-
guided word spotting in historical printed documents using synthetic data and user feedback.
Int J Doc Anal Recogn 9 (2007) 167–177
11. Grana, C., Vezzani, R., Cucchiara, R.: Enhancing HSV Histograms with Achromatic Points
Detection for Video Retrieval. In: Proc Int Conf on Image and Video Retrieval. (2007) 302–
308
12. Haralick, R.M. and Shanmugam, K. and Dinstein, I.: Textural features for image classifica-
tion. IEEE Trans Syst Man Cybern 3 (1973) 610–621
13. Jain, A., Dubes, R.: Algorithms for clustering data. Prentice-Hall, Inc. (1988)
14. Pekalska, E., Duin, R.P.W.: Dissimilarity representations allow for building good classifiers.
Pattern Recognition Letters 23 (2002) 943–956
102