
VISUAL PROGRAMMING LANGUAGE FOR SECURITY
REQUIREMENTS IN BUSINESS PROCESSES AS
MODEL-DRIVEN SOFTWARE DEVELOPMENT

Mirad Zadic and Andrea Nowak
Austrian Research Centers GmbH-ARC, A-2444 Seibersdorf, Austria

Keywords: Model Driven Development, Graphical modeling environment, Security policies Architectures, Access
Control Policy, Business Processes, XACM Policy Generator.

Abstract: Our approach is based on a security modeling framework and a Meta Modeling Environment for design and
generating of access control and security policies for business processes. The framework introduces a
methodology that focuses on both, the modeling as well as the implementation aspect of security-
requirements and consists of a suite of tools that facilitates the correct realization and the cost-efficient
management of decentralized, security-critical workflows. Currently, the framework is being analyzed for
general suitability to domains in business processes, taking basic security requirements like confidentiality,
integrity and non-repudiation. We use Model-Driven Development (MDD) approach to creating our
solutions based on graphical modeling environment as EMF (Eclipse Modeling Framework), GEF
(Graphical Editor Framework) and GEMS (Generic Eclipse Modeling System). This graphical modeling
environment makes possible rapidly creating modeling tool from a visual language description or
metamodel without any coding in third-generation languages. The framework is prototypically validated
through a case study for the systematic realization of e-government related workflows. Realizations of
security issues follow the steps from provide methodologies that translate the abstract security requirements
into run-time artifacts for the target architecture through model transformation. On this approach for this
Case study is develop a Policy Specifications modeling tool based on the metamodel describing syntax of
the DSML. The important goal is the automatically generate the security artifacts (enforceable security
policies in XACML format) to improve the productivity of the development process and the platform
independent design. Our case study defines the Business processes, which provide secure Information
between three Domains: Municipality, Environment Ministry and Registry of the Combustion plant -
environmental pollution producer.

1 INTRODUCTION

In this work we present a modeling tool and
generator which use evaluated modeling
environment that enables developers to generate
security specific Modeling Language for
customizing the security requirements in security-
critical inter-organizational business processes based
on services-oriented architectures. As web services
are often composed to carry out complex business
transactions, not only the web service itself has to be
secured, but also the message exchange between
different web services. Web Service Security
specifies a mechanism for signing and encrypting
SOAP messages and this mechanism can be used to
implement message integrity and confidentiality. It

further supports the propagation of the
authentication information in the form of security
tokens (e.g., SAML, Kerberos tickets or X.509
certificates). XACML provides access control
mechanisms and policies within documents, while
SAML represents authentication and authorization
decisions in XML format and is used to exchange
this information over the internet (e.g., to support
single sign-on).

Specifying security policies in XACML,
especially access control policies, may be an
enormous task for every security administrator.
XACML policies are rich XML-based documents
with complex syntax, it is very difficult and time
consuming to write error free XML documents by
hand, especially for people who do not know the

29Zadic M. and Nowak A. (2009).
VISUAL PROGRAMMING LANGUAGE FOR SECURITY REQUIREMENTS IN BUSINESS PROCESSES AS MODEL-DRIVEN SOFTWARE
DEVELOPMENT.
In Proceedings of the International Conference on Security and Cryptography, pages 29-36
DOI: 10.5220/0002227500290036
Copyright c© SciTePress

syntax well. This may affect the productivity of the
administrator and the quality of the software. Hence,
a suitable XACML editor or a tool that can
automatically generate XACML policies is needed.
Another problem is the security administrator does
not take part directly in the design of business
process, so he/she may not understand the software
structure and details well enough to define policies
to fulfill the security requirements.

Many models have been developed to construct
and manage the security requirements but our
security infrastructure is deployed in a modular way
with pre-defined, configurable security components.
The goal in this work is to present the concept and
design of a generator, which should support the
process of specifying the access control policies.
Furthermore, the generator should provide a support
for security administrator and help him to tackle the
well-known problems, which may arise during the
security policy specification.

Model-driven software development can be seen
as a new generation of visual programming
languages. A visual language basically consists of
two parts – domain and presentation (visual) part.
The domain part of the visual language is defined by
means of the domain metamodel, where the relevant
language concepts and their relationships are
formalized for precise definition of language
semantic. Instances of classes in the metamodel are
types of diagram graphical elements for a diagram
definition in the presentation (or graphics) model.
Other to say and very shortly express, the syntax of
every model is defined by a metamodel, the model
plays the role of the source code, and the generator
replaces the compiler.

Figure 1: Core modeling process.

At the core of MDA are the concepts of models,
of metamodels defining the abstract languages in
which the models are captured, and of
transformations that take one or more models and
produce one or more other models from them.

Figure 1 shows the relationships between these
major concepts.

We use for metamodeling the Generic Eclipse
Modeling System (GEMS), a part of the Eclipse
Generative Modeling Technologies (GMT) based on
MOF (Meta Object Facility). This framework helps
developers rapidly create a graphical modeling tool
from a visual language description (metamodel)
without any coding in third-generation languages.
The Generic Eclipse Modeling System (GEMS)
substantially reduces the cost of developing a
graphical modeling tool by allowing developers to
focus on the key aspects of their tool: the
specification of the DSML and the intellectual assets
built around the use of the language. The
infrastructure to create, edit, and constrain instances
of the language is generated automatically by GEMS
from the language specification. That make possible
the separation of language development, coding, as
well as “look and feel” development, such as
changing how modeling elements appear based on
domain analyses.

Using this approach, it is possible to generate
automatically large amounts of source code and
other artifacts, e.g. deployment descriptors and make
reference XML files, all based on relatively concise
models. This improves the productivity of the
development process as well as the quality of the
resulting systems. It is also a large step towards the
platform independent design of systems.

2 SECURITY WORKFLOWS

The development of a security-critical inter-
organizational workflow starts with the analysis and
the design of the workflow, followed by a risk and
threats analysis, and the security requirements
specification. Security requirements are modeled in
a platform-independent way at predefined levels of
abstraction.

The inter-organizational business workflow is
designed by representatives of the partners involved
in the workflow. The security requirements are
defined together with design of business workflow
in each business step and there is no central control
of the security requirements. The involving of
security requirements in business workflow is result
of each partner’s specification and is named global
workflow model. Very often business partners have
already implemented some kind of locale business
logic with security requirements. That means the
global workflow describes the interaction of partners
abstracting from the internal processing steps and

SECRYPT 2009 - International Conference on Security and Cryptography

30

from the internal business logic. In this case, the
development of an inter-organizational workflow
requires an inside-out proceeding. The interface of
the locale business logic is projected onto the global
business workflow. Business process modeling is
not a topic of this paper, but play important role in
modeling of security requirements.

The interface of every partner’s node describes
the public part of the local business logic, which is
accessible to the inter-organizational workflow and
must be conforming to a uniform technical,
syntactical and semantic specification the partners.
The partners should decide on parameter formats,
interaction protocols, operation semantics or run-
time constraints specification. This kind of partner’s
requirements is modeled in the interface models and
resulted information is typically published in WSDL
files and technical models of UDDI registries. The
interface model represents a specification of the
functional requirements the partner has to implement
at its node, as an outside-in proceeding.

From a security perspective, the business process
deals with security requirements from the involved
partners and makes the secure exchange of messages
and documents between different partners. In the
view of a partner the local software architecture
implements the security portion of the global
business workflow and offers a security interface to
its partners.

The workflow engine and the Web services in
the back-end are wrapped by security components.
So-called Policy Enforcement Point (PEP) acts as
security gateways. We differentiate between the
external and the internal PEP. The external PEP is
the single point of entry into the partner’s domain.
He is in charge of implementing requirements
related to message integrity, confidentiality and non-
repudiation for all external communication. To this
end, it checks the correct signatures and decrypts
incoming requests or response. Correspondingly, the
gateway signs outgoing requests or responses and
encrypts them as specified in the global business
workflow. Both, the security gateway and the
workflow engine implement the requirements by
configuration. The configuration data is generated
from the respective models views. After receiving a
service request the PEP authenticates the caller with
support of the Authentication and Role Mapping,
checks the compliance of the incoming message
according to signed and encrypted elements and
finally queries the Policy Decision Point (PDP) for
access rights. After successful completion of these
three steps, the PEP forwards the request to the
workflow engine which then performs the service

orchestration. Optionally, an internal PEP, that
merely acts as a role mapping unit may map the
caller’s global role to some internal role
representation required by the back-end applications.

3 MODELING ENVIRONMENT

Our approach to mapping the variant’s global
security requirements to a customizing modeling
tool involves the use of Model-driven development
techniques. Different security models of developed
customizing modeling tool can be constructed for
the automatically check of correctness application
designs meet their security requirements. Modeling
tools can also be used to generate the customization,
composition, packaging, and deployment code to
implement security artifacts. To develop such
security modeling tool, it is common to build
domain-specific modeling languages (DSML) tools
on top of a Meta-configurable Modeling
Environment. Crucial to creating a viable Meta
Modeling Environment is providing a platform that
has the appropriate level of abstract for each domain
expert. Our Meta Modeling Environment is Generic
Eclipse Modeling System (GEMS). The main
distinguishing feature of GEMS is an appropriately
built presentation meta-model. Generic Eclipse
Modeling System contains a universal metamodel-
based presentation engine for element property
editing, and an advanced project tree engine. The
GEMS reuses the basic Eclipse components such as
EMF (Eclipse Modeling Framework) and GEF
(Graphical Editing Framework), as well as parts of
GMF (Graphical Modeling Framework) runtime.
GMF utilizes Eclipse EMF and GEF technologies.
EMF is used for model management and GEF for
graphical user interface. GMF uses a static-mapping-
based approach. It defines a set of meta-models:
graphical (presentation), tooling and mapping meta-
models. Graphical meta-model defines the graphical
element types, tooling meta-model defines the
palette and menus and the mapping meta-model
defines the mapping possibilities between the
models. In addition, it uses EMF ECORE Model as
the domain meta-model.

The GEMS is created by the Distributed Object
Computing (DOC) Group at the Institute for
Software Integrated Systems (ISIS) at Vanderbilt
University. This Meta-configurable Modeling
Environment is enough comfortable and very
adaptable for customizing security artifacts via the
following capabilities:

VISUAL PROGRAMMING LANGUAGE FOR SECURITY REQUIREMENTS IN BUSINESS PROCESSES AS
MODEL-DRIVEN SOFTWARE DEVELOPMENT

31

- A visual interface supports the creation of
domain-specific modeling languages, contains a
meta-modeling environment that supports the
definition of paradigms, which are type systems
that describe the roles and relationships in
particular domains.

- The creation of models that are instances of
DSML paradigms within the same environment.

- Customization of such environments so that the
elements of the modeling language represent the
elements of the domain in a much more intuitive
manner than is possible via third-generation
programming languages.

- A flexible type system that allows inheritance and
instantiation of elements of modeling languages.

- An integrated constraint definition and
enforcement module that can be used to define
rules that must be adhered to by elements of the
models built using a particular DSML.

- Facilities to plug-in analysis and synthesis tools
that operate on the models.

A key challenge to developing security modeling
tools is the formal specification of the security
artifacts in DSML. Engineers must create a language
to capture both the static and dynamic semantics.
The GEMS meta-modeling language allows
developers to specify the common types in their
system, the variability in instances of the types, the
allowed containment compositions of the types, and
the allowed connections between instances of types.
These capabilities allow developers to apply object
analysis to their security artifacts and capture the
results in a metamodel. This metamodel can then be
interpreted by the GEMS framework to generate
DSML(s) for customizing the security artifacts.

By allowing developers to formally define the
commonality and the variability in the system and
automatically generating security artifacts, Meta
Modeling Environment reduces the development
effort require for a complete implementation the
customization modeling tools, and providing a
modeling language intuitive to domain experts that
customize the security requirements.

3.1 XACML Policies

The security requirements are configured and
expressed in XACML (eXtensible Access Control
Mark-up Language), which is an XML based OASIS
standard for a policy and access control decision.
The main goal of policy generator is to derive low-
level and enforceable security policies. These
policies are deduced from the business process,
which acts as the input scenario. In this scenario, the

security requirements should be already identified,
and annotated within the business process. The
visual programming languages developed with
metamodel makes possible to model security
requirements in modeling consummation tool. As a
part of modeling consummation tool the policy
generator generates the access control policies in
XACML standard, which defines the machine-
interpretable and also machine-enforceable security
policies. The generator shall generate follows types
of XACML components, Figure 2:

<PolicySet> element combines Policies in a
PolicySet. It has a target, a policy-combining
algorithm-identifier, a set of policies and
obligations.

<Policy> element combines rules in a policy.
Therefore, a policy consists of a target element, a
rule-combining algorithm identifier, a set of rules
and obligations. The target element of policy has the
same purpose as target element of rule. The rule-
combining algorithm determines rule-combining
method applied to the rules.

<Policy Set><Policy Set><Policy Set>
<Policy><Policy><Policy>

<Target>

<Subjects> <Resources> <Actions>

<Rule><Rule><Rule>

<Target>

<Subjects> <Resources> <Actions>

<Condition>
<Apply><Apply><Apply>

<Obligations>
<Apply><Apply><Obligation>

Figure 2: XACML components.

<Rule> element is the most elementary unit of
XACML policy. It has the target element, the
condition element and the effect element. The target
element specifies the environment, on which this
rule should apply. The condition element is a
Boolean function over subject, resource action and
environment attributes. In order to apply the effect
of rule on the target, this condition should evaluate
to true, otherwise, the rule will return indeterminate.
Lastly, the effect element states the decision for this
rule: either permit or deny.

SECRYPT 2009 - International Conference on Security and Cryptography

32

<Target> element describes the properties of the
environment, on which the Rule, Policy or Policy
Set should apply. It contains the subject description,
resource description, action performed and
environment description.

<Condition> element represents a Boolean
expression that refines the applicability of the rule
beyond the predicates implied by its target.

<Obligations> element of an XACML <Policy>
is a directive to the PEP to perform additional
processing following the enforcement of an access
control decision. It contains one or more
<Obligation> elements and typically references
elements in the request context. Processing of
<Obligations> elements is application-specific.

4 OUTCOMES AND RESULTS

The first step for building a graphical modeling tool
with selected Meta Modeling Environment, called
ARCSecu Modeling Tool, is to define a metamodel
for specifying syntax of the security artifacts based
on the DSML for secure Web services. This
metamodel describes the graphical entities,
connection types, attributes, and other visual syntax
information needed by Meta Modeling Environment.
On the Figure 3a and 3b is presented ARCSecu Meta
Model with follow artifacts:

Figure 3a: Metamodel for security requirements.

The first entity (class) is the ArcSecu Meta
Model, which is represented as the root entity in our
metamodel. Domain, Service and Messages entities
describe a collection of abstract operations. Three
entity types IntegrityRequirement, ConfRequirement
and NonRepRequirement are involved for security
artifacts. These security goals are child entities of
Message. The Service entity is child entity from
Domain.

The ARCSecu Meta Model involves connections
between Message and Service. These are defined

with FlowFromMessage and FlowToMessage
connections in suitable directions. Inheritance
relationships are created by adding an Inheritance
element to the model and connecting it to the parent
type and derived type(s). Any attributes,
connections, or containment relationships specified
by the parent are inherited by derived types. The
presented ARCSecu Meta Model contains entities
with two Inheritance relationships. First Inheritance
is defined between IntegrityRequirement
(BaseClass), ConfRequirement (BaseClass) and
XmlSecurityRequirement (DerivedFrom). Second
the Inheritance between NonRepRequirement
(BaseClass), XmlSecurityRequirement (BaseClass),
SecurityRequirement (DerivedFrom).

The classes IntegrityRequirement and
ConfRequirement inherit the attributes (NS1, NS2,
NS3, NS4, NS5, NS6, NS7, XPath) from
XmlSecurityRequirement entity. Service entity
carries an attribute (string type) named Operation
Name and Message carries also an attribute
(Boolean type) named IsResponse.

Figure 3b: Metamodel for security requirements – detail.

In step two, a code generator is invoked that
produces the EMF, GEF, GMF, XML descriptors,
which are needed to create a plug-in for editing the
new language based on DSML, described by the
metamodel. A graphical design defines custom icons
and CSS styles for the DSML elements in the third
step. For the fourth step, developers specify the
constraints on the model that GEMS uses to ensure
that only correct models are built with the model.
The constraints generally involve domain
information that requires a constraint language to
express properly. Finally, domain experts use the
customizing modeling tool produced by GEMS to

VISUAL PROGRAMMING LANGUAGE FOR SECURITY REQUIREMENTS IN BUSINESS PROCESSES AS
MODEL-DRIVEN SOFTWARE DEVELOPMENT

33

construct models of the domains. Model interpreters
(or code generators) are developed to produce
software artifacts such as Java code or XML file
descriptors.

4.1 Modeling Tool and Generator for
the Security Artifacts

The modeling tool as an Eclipse rich client is used to
visually modeling the security needs of each
communicated domain and it is extended with the
XACML policy generator. For each involved
domain the generator creates the XACML policy
descriptor that needs to be deployed to the policy
folder of each domain. To model the communication
between two domains one first needs to drag two
domain model elements from the palette on the right
onto the canvas, Figure 4. The bottom panel of the
new domain elements is initially colored red. This
indicates that some properties have to be set to make
the model element valid. The properties can be set in
the properties panel at the bottom of the modeling
tool. For each domain a name has to be set that
denotes its role in the communication. Next one
needs to add services to each domain that
communicate with each other by dragging services
from the palette on each domain. The services need
to have a name and an operation name set to be
valid. These actually have to correspond to the real
names of the services. Now the communication
needs a message that is sent between the two nodes.
This is done by dragging a message model element
on the canvas.

Figure 4: The modeling tool for security requirements.

Then the message has to be associated with the
initiating and receiving services by using the
connection tool. Finally the security requirements of
the communication are configured by dragging
security requirements from the palette onto the
message. For confidentiality and integrity

requirements one has to specify the XPath to the
elements on which the requirements shall be
enforced and also up to five namespaces. For the
non- repudiation requirement no further
configuration is needed. The generator can be run by
right-clicking on the canvas and selecting ArcSecu
Menu->DO IT. For each involved domain the
generator creates one folder containing the XACML
policies that need to be deployed to the policy folder
of each domain.

The security requirements are modeled and
translated for exchange of secure information
between follows e-government institutions:
Municipality (PKF Domain), Environment Ministry
Register (eRAS Doamin) and Registry of the
Incinerators – annual report about environmental
pollution producer (vBRE Domain). The model of
this business process is developed with ARCSecu
Modeling tool and generator for three security goals:
integrity, confidentiality and non-repudiation. Very
reduced example of XACML generated policy code
is presented on Figure 5.

Figure 5: Structure of XACML policy.

Client sends the request via web application with
the necessary parameters on e-government business
service (BPEL service) to get the information about
the company's incinerators. BPEL service forwards
continuously the request to the secure component of
the BPEL server. This prepares the request message

SECRYPT 2009 - International Conference on Security and Cryptography

34

in accordance with defined security artifacts in the
XACML policy descriptors. This may mean that the
message (or parts of the message) is encrypted
and/or it be signed and also it holds secured date for
authentication and authorization elements. Such
secure message is transmitted over the Internet for
PKF Domain, which offers the public services with
information about the existing companies. The
security component of PKF Domain verifies
message according to the defined XACML Policy
descriptors and the message will be deciphered after
successful test and on the PKF Domain servicers
redirected. The response of the PKF Web Services is
back to the security component and skillfully using
the XACML policy again transmitted to BPEL
server.

The Business service processes the response
over security component to the filter component of
Business process, this mean each founded company
is checked on registration date in eRAS Domain –
the waste handling company register. For filtered
companies Business service create a request for
vBRE Domain about annual report for
environmental pollution from incinerators.

Figure 6: Secure message over internet.

The communication process for other two
domains (eRAS and vBRE) follow the similarly
security Logic as for PKF domain over predefined
XACML policy descriptors, as Figure 6 presented.
The verifying of message and integrating security
elements in message happen each time by security
component of domain after request incoming or
before response sending.

5 CONCLUSIONS

We introduce the concept of Model Driven Security
for a software development process, which allows
for the integration of security requirements through

system models. This modeling framework supports
the generation of security infrastructures with
focuses on business logic as well as on inter-
organizational workflow management.

This Meta modeling approach reduces the cost of
developing a graphical modeling tool by allowing
developers to focus on the key aspects of their tool.
The infrastructure to create, edit, and constrain
instances of the language is generated automatically
and the implementing process makes possible the
separation of language development, coding, as well
as “look and feel” development.
We have evaluated the Generic Modeling
Environment, a configurable modeling and program
synthesis tool set, which makes possible the rapid
and cost-effective creation of highly customized,
domain-specific system. It is highly applicable for
modeling XAMCL policy generator related to
security artifact for service-oriented architecture. We
focus on visually modeling an XACML system to
fulfill the XACML profile and automatic generation
the security infrastructure in XACML-formatted
documents.

This article describes the features available for
building graphical modeling tools with Meta
Modeling Environment. This Environment focuses
on allowing developers to create Eclipse-based
modeling tools without writing plug-in descriptors,
GMF mapping files, GEF code, or EMF code.
Furthermore, Meta Modeling Environment (GEMS)
provides facilities to support external specification
of visualization details so that they can be managed
by graphic designers and other individuals not
experienced with complex GUI coding.

The development of a security-critical inter-
organizational workflow starts with the analysis and
the design of the workflow, followed by a
comprehensive analysis of risks and threats, and the
ensuing specification of security requirements. The
requirements are modeled in a platform-independent
way at different levels of abstraction. The project
goal is to analyze security issues that may stem from
requirements imposed by e-government business
processes and in a second step to provide
methodologies that translate the abstract security
requirements into run-time artifacts for the target
architecture through model transformation.
Ultimately, the implementation should allow the
declaration of the secure message exchange via the
internet.

In our proof of concept we used three typically
security goals in inter-organizational workflows:
integrity, conditionality and non-repudiation. Our
aim is on sample way to present our approach for

VISUAL PROGRAMMING LANGUAGE FOR SECURITY REQUIREMENTS IN BUSINESS PROCESSES AS
MODEL-DRIVEN SOFTWARE DEVELOPMENT

35

automatic generate security requirements. On the
same modeling approach and similar developing of
modeling tools is possible to design other security
requirements as: Identification, Authentication and
Authorization, Trust, Privacy and so on.

Several improvements and extensions need to be
addressed in future work. Currently our approach
focuses on static design models, which are relatively
close to the implementation. It is worth considering
whether the efficiency of the development process of
secure applications can be improved by annotating
models at a higher level of abstraction (e.g. analysis)
or by annotating dynamic models. Moreover, some
critical questions concerning the development
process are still open, e.g. how are roles and
permissions identified? Beyond that, the current
prototype does not yet demonstrate the platform
independence of our concepts. Future work will
focus on modeling security requirements and design
information using dynamic models. Furthermore, the
development process for secure systems starting
with the initial analysis up to the complete secure
system design will be investigated. In this context,
we will examine the possibility of propagating
security requirements between analysis and design
models and ways to verify the compatibility of
requirements and design information given at
different levels.

REFERENCES

Xin Jin, Master Thesis, University of Ottawa, Ontario,
Canada 2006 Applying Model Driven Architecture
approach to Model Role Based Access Control System

Taufiq Rochaeli, TUD SEC, Ruben Wolf, Fraunhofer-SIT,
Policy Generator, February 10, 2006.

Jules White, Douglas Schmidt, Department of Electrical
Engineering and Computer Science, Vanderbilt
University, Nashville, USA, Simplifying the Deve-
lopment of Product-line Customization Tools via
Model Driven Development

Panos Periorellis, Jake Wu, March 2006, XACML-Role
Based Access Control

Jeremy W. Bryans, John S. Fitzgerald, Panos Periorellis,
School of Computing Science, Newcastle University,
UK, A Formal Approach to Dependable Evolution of
Access Control Policies in Dynamic Collaborations

Eduardo Fernández-Medina and Mario Piattini, Alarcos
Research Group, Universidad de Castilla-La Mancha,
Towards a Process for Web Services Security

Yuri Demchenko, Advanced Internet Research Group,
University of Amsterdam, Policy-based Access
Control to Data Ser vices in Ser vice-oriented
Architecture and Grid

GEMS EMF Intelligence Tutorial, http://wiki.eclipse.org/
GEMS_EMF_Intelligence_Tutorial

GEMS EMF Intelligence Tutorial with Mixed Constraints,
http://wiki.eclipse.org/GEMS_EMF_Intelligence_Tuto
rial_with_Mixed_Constraints

GEMS Metamodeling Tutorial,
http://wiki.eclipse.org/ GEMS_Metamodeling_Tutorial

Jules White, The Generic Eclipse Modeling System
(GEMS)

Markus Völter, openArchitectureWare 4.2 Fact Sheet,
voelter@acm.org Date: September 3, 2007

Mirad Zadic, Stockholm, Sweden, 22 - 24 October 2008,
A Meta Model Generator for Implementing Access
Control and Security Policies in Distributed Systems
based on Model-Driven Architecture, eChallenges e-
2008 Conference & Exhibition

GrTP: Transformation Based Graphical Tool Building
Platform, Institute of Mathematics and Computer
Science, University of Latvia, Building Tools by
Model Transformations in Eclipse, University of
Latvia, Audris Kalnins, Oskars Vilitis1, Edgars
Celms1

OASIS, 2005. eXtensible Access Control Markup
Language (XACML) Version 2.0. http://docs.oasis-
open.org/xacml/2.0/access_control-xacml-2.0-core-
spec-os.pdf

OASIS, 2005, Assertions and Protocols for the OASIS
Security Assertion Markup Language (SAML) V2.0.
http://docs.oasis-open.org/xacml/2.0/access_control-
xacml-2.0-saml-profile-spec-os.pdf

OASIS, 2005. Core and hierarchical role based access
control (RBAC) profile of XACML v2.0.
http://docs.oasis-open.org/xacml/2.0/access_control-
xacml-2.0-rbac-profile1-spec-os.pdf

OASIS, 2005. SAML 2.0 profile of XACML v2.0.
http://docs.oasis-open.org/xacml/2.0/access_control-
xacml-2.0-saml-profile-spec-os.pdf

OASIS, 2005. Web Service Security SAML Token Profile
1.1. http://www.oasis-open.org/specs/
index.php#wssprofilesv1.0

OASIS, 2003. XACML profile for Web-services.
http://www.oasis-
open.org/committees/download.php/3661/draft-xacml-
wspl-04.pdf

OASIS, 2004. WS-Security 1.1 Core Specification.
http://www.oasis-open.org/committees/download.php/
16790/wss-v1.1-spec-os-SOAPMessageSecurity.pdf

W3C, 2006. Web Service Policy 1.2-Framework (WS-
Policy). http://www.w3.org/Submission/WS-Policy/

ORMSC White Paper, A Proposal for an MDA
Foundation Model

Torsten Lodderstedt, David Basin, and Jürgen Doser
Institute for Computer Science, University of
Freiburg, Germany, SecureUML: A UML-Based
Modeling Language for Model-Driven Security

SECRYPT 2009 - International Conference on Security and Cryptography

36

