WHERE WE STAND AT PROBABILISTIC REASONING

Wilhelm Rödder, Elmar Reucher, Friedhelm Kulmann

2009

Abstract

Bayes-Nets are a suitable means for probabilistic inference. Such nets are very restricted concerning the communication language with the user, however. MinREnt-inference in a conditional environment is a powerful counterpart to this concept. Here conditional expressions of high complexity instead of mere potential tables in a directed acyclic graph, permit rich communication between system and user. This is true as well for knowledge acquisition as for query and response. For any such step of probabilistic reasoning, processed information is measurable in the information theoretical unit bit . The expert-system-shell SPIRIT is a professional tool for such inference and allows realworld (decision-)models with umpteen variables and hundreds of rules.

References

  1. Breese, J. S. and Heckerman, D. (1996). Decision-Theoretic Troubleshooting: A Framework for Repair and Experiment. Morgan Kaufman, San Francisco.
  2. Diez, F. J. and Galan, S. (2003). Efficient computation for the noisy MAX. International Journal of Intelligent System, 18, 165-177.
  3. Harmon, P. and King, D. (1985). Expert Systems. Wiley, New York.
  4. Hugin (2009). http://www.hugin.com.
  5. Jensen, F. V. (2002). Bayesian Networks and Decision Graphs. Springer, New York.
  6. Kern-Isberner, G. (1998). Characterizing the principle of minimum cross-entropy within a conditional-logical framework. Artificial Intelligence, New York, 169- 208.
  7. Raiffa, H. (1990). Decision Analysis: Introductory, Lectures on Choice under Uncertainty. Addison-Wesley, Reading, Massachusetts.
  8. Rödder, W. and Kern-Isberner, G. (2003a). From Information to Probability - An Axiomatic Approach. International Journal of Intelligent Systems, 18-4, 383-403.
  9. Rödder, W. and Kern-Isberner, G. (2003b). Self learning or how to make a knowledge base curious about itself. In German Conference on Artificial Intelligence (KI 2003). LNAI 2821, Springer, Berlin, 464-474.
  10. Rödder, W. and Kulmann, F. (2006). Recall and Reasoning - an Information Theoretical Model of Cognitive Processes. Information Sciences, 176-17, 2439-2466.
  11. Rödder, W., Reucher, E., and Kulmann, F. (2006). Features of the Expert-System Shell SPIRIT. Logic Journal of the IGPL, 14-3, 483-500.
  12. Shore, J. E. and Johnson, R. W. (1980). Axiomatic Derivation of the Principle of Maximum Entropy and the Principle of Minimum Cross Entropy. IEEE, Trans. Information Theory, 26-1, 26-37.
  13. Singer, H. (2008). Maximum Entropy Inference for Mixed Continuous-Discrete Variables. Faculty of Business Science, University of Hagen, Discussion Paper 432.
  14. Sombe, L. (1990). Reasoning under Incomplete Information in Artificial Intelligence. Wiley, New York.
  15. Spirit (2009). http://www.xspirit.de.
Download


Paper Citation


in Harvard Style

Rödder W., Reucher E. and Kulmann F. (2009). WHERE WE STAND AT PROBABILISTIC REASONING . In Proceedings of the 6th International Conference on Informatics in Control, Automation and Robotics - Volume 3: ICINCO, ISBN 978-989-8111-99-9, pages 394-397. DOI: 10.5220/0002241503940397


in Bibtex Style

@conference{icinco09,
author={Wilhelm Rödder and Elmar Reucher and Friedhelm Kulmann},
title={WHERE WE STAND AT PROBABILISTIC REASONING},
booktitle={Proceedings of the 6th International Conference on Informatics in Control, Automation and Robotics - Volume 3: ICINCO,},
year={2009},
pages={394-397},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0002241503940397},
isbn={978-989-8111-99-9},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 6th International Conference on Informatics in Control, Automation and Robotics - Volume 3: ICINCO,
TI - WHERE WE STAND AT PROBABILISTIC REASONING
SN - 978-989-8111-99-9
AU - Rödder W.
AU - Reucher E.
AU - Kulmann F.
PY - 2009
SP - 394
EP - 397
DO - 10.5220/0002241503940397