ON THE LINEAR SCALE FRACTIONAL SYSTEMS - An Application of the Fractional Quantum Derivative

Manuel Duarte Ortigueira

2009

Abstract

The Linear Scale Invariant Systems are introduced for both integer and fractional orders. They are defined by the generalized Euler-Cauchy differential equation. It is shown how to compute the impulse responses corresponding to the two regions of convergence of the transfer function. This is obtained by using the Mellin transform. The quantum fractional derivatives are used because they are suitable for dealing with this kind of systems.

References

  1. Abramowitz, M. and Stegun, I. (1972) Stirling Numbers of the First Kind., §24.1.3 in Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th printing. New York: Dover, p. 824.
  2. Andrews, G.E., Askey, R., and Roy, R. (1999). Special functions. Cambridge University Press.V.
  3. Ash, J.M., Catoiu, S., and Rios-Collantes-de-Terán, R., (2002), “On the nth Quantum Derivative,” J. London Math. Soc. (2) 66, 114-130.
  4. Bertran, J. Bertran, P., and Ovarlez, J.P., (2000), “The Mellin Transform”, in “The Transforms and Applications Handbook”, 2nd ed,, Editor-in-Chief A.D. Poularikas, CRC Press,.
  5. Braccini, C. and Gambardella, G., (1986), “Form-invariant linear filtering: Theory and applications,” IEEE Trans. Acoust., Speech, Signal Processing, vol.ASSP-34, no. 6, pp. 1612-1628,.
  6. Gerardi, F.R., (1959) “Application of Mellin and Hankel transforms to networks with time varying parameters,” IRE Trans. Circuit Theory, vol. CT-6, pp. 197-208.
  7. Kac, V. and Cheung, P. (2002) “Quantum Calculus”, Springer,.
  8. Koornwinder, T.H., (1999) “Some simple applications and variants of the q-binomial formula,” Informal note, Universiteit van Amsterdam,.
  9. Ortigueira, M. D., (2006), A coherent approach to non integer order derivatives, Signal Processing Special Section: Fractional Calculus Applications in Signals and Systems, vol. 10, pp. 2505-2515.
  10. Ortigueira, M.D., (2007) “A Non Integer Order Quantum Derivative”, Symposium on Applied Fractional Calculus (SAFC07), Industrial Engineering School (University of Extremadura), Badajoz (Spain), October 15-17.
  11. Ortigueira, M.D., (2008) “A fractional Quantum Derivative”, proceedings of the IFAC Fractional Differentiation and its Applications conference, Ankara, Turkey, 05 - 07 November.
  12. Yazici, B. and Kashyap, R.L., (1997) “A Class of SecondOrder Stationary Self-Similar Processes for 1/f Phenomena,” IEEE Transactions on Signal Processing, vol. 45, no. 2.
Download


Paper Citation


in Harvard Style

Duarte Ortigueira M. (2009). ON THE LINEAR SCALE FRACTIONAL SYSTEMS - An Application of the Fractional Quantum Derivative . In Proceedings of the 6th International Conference on Informatics in Control, Automation and Robotics - Volume 2: ICINCO, ISBN 978-989-674-001-6, pages 196-202. DOI: 10.5220/0002246901960202


in Bibtex Style

@conference{icinco09,
author={Manuel Duarte Ortigueira},
title={ON THE LINEAR SCALE FRACTIONAL SYSTEMS - An Application of the Fractional Quantum Derivative},
booktitle={Proceedings of the 6th International Conference on Informatics in Control, Automation and Robotics - Volume 2: ICINCO,},
year={2009},
pages={196-202},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0002246901960202},
isbn={978-989-674-001-6},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 6th International Conference on Informatics in Control, Automation and Robotics - Volume 2: ICINCO,
TI - ON THE LINEAR SCALE FRACTIONAL SYSTEMS - An Application of the Fractional Quantum Derivative
SN - 978-989-674-001-6
AU - Duarte Ortigueira M.
PY - 2009
SP - 196
EP - 202
DO - 10.5220/0002246901960202