References
1. Sejnowski, T. J., Koch, C. & Churchland, P. S. (1988). Computational neuroscience.
Science, 241, 1299-1306.
2. Koch, C. & Segev, I. (2000). The role of single neurons in information processing. Nature
Neuroscience, 3, 1171-1177.
3. Gray, C. M., König, P., Engel, A. K. & Singer, W. (1989). Oscillatory responses in cat
visual cortex exhibit inter-columnar synchronization which reflects global stimulus
properties. Nature, 338, 334-347.
4. Vaadia, E., Haalman, I., Abeles, M., Bergman, H., Prut, Y., Slovin, H. & Aertsen, A.
(1995). Dynamics of neuronal interactions in monkey cortex in relation to behavioural
events. Nature, 373, 515-518.
5. London, M. & Häusser M. (2005). Dendritic computation. Annual Review of Neuroscience,
28, 503-532.
6. Agmon-Snir, H., Carr, C. E. & Rinzel, J. (1998). The role of dendrites in auditory
coincidence detection. Nature, 393, 268-272.
7. Mainen, Z. F. & Sejnowski, T. J. (1996). Influence of dendritic structure on firing pattern in
model neocortical neurons. Nature, 382, 363-366.
8. Segev, I & Rall, W. (1988). Computational study of an excitable dendritic spine. Journal of
Neurophysiology, 60, 499-523.
9. Euler, T., Detwiler, P. B. & Denk, W. (2002). Directionally selective calcium signals in
dendrites of starburst amacrine cells. Nature, 418, 845-852.
10. Tukker, J. J., Taylor, W. R. & Smith, R. G. (2004). Direction selectivity in a model of the
starburst amacrine cell. Visual Neuroscience, 21, 611-625.
11. Owens, J. D., Luebke, D., Govindaraju, N., Harris, M., Krüger, J., Lefohn, A. E. & Purcell,
T. J. (2007). A survey of general-purpose computation on graphics hardware. Computer
Graphics Forum, 26, 80-113.
12. GPGPU. Retrieved April 01, 2009 from http://www.gpgpu.org
13. Bernhard, F. & Keriven, R. (2006). Spiking Neurons on GPUs. International Conference
on Computation Science. Workshop general purpose computation on graphics hardware
(GPGPU): Methods algorithms and applications, Readings, U.K.
14. Gobron, S., Devillard, F. & Heit, B. (2007). Retina simulation using cellular automata and
GPU programming. Machine Vision and Applications, 18, 331-342.
15. Woodbeck, K., Roth, G. & Chen, H. (2008). Visual cortex on the GPU: Biologically
inspired classifier and feature descriptor for rapid recognition. IEEE Computer Society
Conference on Computer Vision and Pattern Recognition (CVPR), Anchorage, AK, U.S.A.
16. Dacey, D. M. (2000). Parallel pathways for spectral coding in primate retina. Annual
Review of Neuroscience, 23, 743-775.
17. Dowling, J. E. (1987). The Retina: An Approachable Part of the Brain. Cambridge, MA,
USA. Belknap Press.
18. Garaas, T. W. & Pomplun, M. (2007). Retina-inspired visual processing. Proceedings of
BIONETICS, Workshop on Computing and Communications from Biological Systems:
Theory and Applications (CCBS). Budapest, Hungary.
19. Blake, R., Sekuler, R., & Grossman, E. (2003). Motion processing in human visual cortex.
In J H Kaas and C E Collins (Eds.), The Primate Visual System. Boca Raton: CRC Press.
20. Mel, B. W., Ruderman, D. L., & Archie, K. A. (1998). Translation-invariant orientation
tuning in visual “complex” cells could derive from intradendritic computations. The
Journal of Neuroscience, 18, 4325-4334.
21. Barlow, H. (1996). Intraneuronal information processing, directional selectivity and
memory for spatio-temporal sequences. Network, 7, 251-259.
78