havior of the system, but also the trim inputs themselves. What is therefore needed
is a viable controller capable of simultaneously accommodating all coupling features,
parametric uncertainties, and trim errors. State representation is necessary to perform
both tangent linearization for the design of an ideal Optimal stable State Feedback and
Partial Feedback Linearization for output decoupling and underaction restrictions. The
underactuated nature and the use of some part of the Feedback Linearization control in-
duce undesirable residual dynamics. A second order model-free Sliding-Mode is used
to guarantee robust regulation, while preserving zero dynamic stability. Representative
simulations provide appreciation of the validity of the proposed approach.
References
1. Avila Vilchis, J.C.: Mod´elisation et Commande d’H´elicopt`ere, PhD dissertation, Labora-
toire d’Automatique de Grenoble (LAG), Septembre 2001, Institut National Polytechnique
de Grenoble (INPG), France
2. Bergerman, Marcel; Amidi, Omead; Miller, James Ryan; Vallidis, Nicholas & Dudek, Todd:
Cascaded Position and Heading Control of a Robotic Helicopter, Proceedings of the
2007 IEEE/RSJ International Conference on Intelligent Robots and Systems, San Diego,
CA, USA, Oct 29 - Nov 2, 2007.
3. Chen, Chi-Tsong: Linear System Theory and Design, Third Edition, 1999, ISBN:0-19-
511777-8.
4. Dzul, A.; Lozano, R. & Castillo: Adaptative Altitude Control for a Small Helicopter in
Vertical Flying Stand, Proc. of IEEE Conference on Decision and Control, Maui, Dec. 2003.
5. Fossen, Thor Inge: Guidance and Control of Ocean Vehicles, Chichester, John Wiley and
Sons Ltd, University of Trondheim, Norway, 1994.
6. Gavrilets, V.; Mettler, B. & Feron, E.: Nonlinear model for a small-size acrobatic helicopter,
in Proceedings of AIAA Guidance Navigation and Control Conference, Montreal, Quebec,
Canada, August 2001.
7. Isidori, Alberto: Nonlinear Control Systems, Springer-Verlag, London 2003, 3nd ed. ISBN:
3540199160
8. Lin, Feng: Optimal Control Design: An Optimal Control Approach, John Wiley & Sons,
Ltd, 2007, ISBN:978-0-470-03191-9.
9. Mahony, R.; Hamel, T. & Dzul, A.: Hover Control via Lyapunov Control for an Autonomous
Model Helicopter, Proc. of IEEE Conference on Decision and Control, Phoenix, Dec. 1999.
10. Olgu´ın-D´ıaz, Ernesto; Rubio, Luis; Mendoza, Alejandro; G´omez, Nestor & Benes, Bedrich:
Animacin Virtual en 3D de un helicptero de R/C a escala, 3ra Conferencia Iberoamericana
en Sistemas, Ciberntica e Informtica (CISCI 2004). Orlando, FL, July 2004.
11. V. Parra-Vega, S. Arimoto, Y.H. Liu, G. Hirzinger, and P. Akella: Dynamic sliding PID con-
trol for tracking of robot manipulators: Theory and experiments, IEEE Transaction on
Robotics and Automation, Vol. 19, No. 6, pages 976 985. December 2003.
12. Shim, D.H.; Koo, T.J.; Hoffmann, F. & Sastry, S.: Comprehensive Study of Control Design
for an Autonomous Helicopter, Proc. of IEEE Conference on Decision and Control, Tampa.
1998.
13. Spong, M. W.: Underactuated Mechanical Systems, in Control Problems in Robotics and
Automation, B. Siciliano and K. P. Valavanis Eds., LNCIS, vol. 230, pp. 135–150, Springer
Verlag, London, 1998. http://citeseer.ist.psu.edu/spong98underactuated.html
14. Vite-Med´ecigo, S. & Olgu´ın-D´ıaz, Ernesto: Robust Tracking and Disturbances Rejection
with Robust LQR via BDU for a R/C Helicopter, CIIIEE 2008 - ITA, November 2008,
ISBN:978-607-95060-1-8